Model 5081-A-HT

HART[®] Two-Wire Chlorine, Dissolved Oxygen, and Ozone Transmitter

ESSENTIAL INSTRUCTIONS READ THIS PAGE BEFORE PROCEEDING!

Rosemount Analytical designs, manufactures, and tests its products to meet many national and international standards. Because these instruments are sophisticated technical products, you must properly install, use, and maintain them to ensure they continue to operate within their normal specifications. The following instructions must be adhered to and integrated into your safety program when installing, using, and maintaining Rosemount Analytical products. Failure to follow the proper instructions may cause any one of the following situations to occur: Loss of life; personal injury; property damage; damage to this instrument; and warranty invalidation.

- Read all instructions prior to installing, operating, and servicing the product. If this Instruction Manual is not the correct manual, telephone 1-800-654-7768 and the requested manual will be provided. Save this Instruction Manual for future reference.
- If you do not understand any of the instructions, contact your Rosemount representative for clarification.
- · Follow all warnings, cautions, and instructions marked on and supplied with the product.
- · Inform and educate your personnel in the proper installation, operation, and maintenance of the product.
- Install your equipment as specified in the Installation Instructions of the appropriate Instruction Manual and per applicable local and national codes. Connect all products to the proper electrical and pressure sources.
- To ensure proper performance, use qualified personnel to install, operate, update, program, and maintain the product.
- When replacement parts are required, ensure that qualified people use replacement parts specified by Rosemount. Unauthorized parts and procedures can affect the product's performance and place the safe operation of your process at risk. Look alike substitutions may result in fire, electrical hazards, or improper operation.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.

CAUTION

If a 275, 375, or 475 Universal Hart[®] Communicator is used with these transmitters, the software within the 275, 375, or 475 may require modification. If a software modification is required, please contact your local Rosemount Analytical Service Group or National Response Center at 1-800-654-7768.

About This Document

This manual contains instructions for installation and operation of the Model 5081-A HART Two-Wire Chlorine, Dissolved Oxygen, and Ozone Transmitter. The following list provides notes concerning all revisions of this document.

<u>Rev. Level</u>	<u>Date</u>	<u>Notes</u>
A	1/03	This is the initial release of the product manual. The manual has been reformatted to reflect the Emerson documentation style and updated to reflect any changes in the product offering.
В	4/03	Specs updates.
С	6/03	Agency certification update.
D	11/03	Revised surface mount dimensional drawing.
E	12/03	Revised Current Input table on page 93.
F	8/04	Fixed CSA logo.
G	9/06	Add Model 4000Percent Oxygen in Gas Censor, pp. 1,3 Appendix B
Н	12/09	Update DNV Logo and company name
I	6/10	Misc. update
J	1/11	Replace ${ m I\!R}$ with ${ m }^{ m M}$ on RAI products, update HART to ${ m I\!R}$
К	5/11	Update Baseefe/Atex label drawing pg 22.
L	12/12	Add updated CE certifications.

MODEL 5081-A MICROPROCESSOR TRANSMITTER

TABLE OF CONTENTS

1.0 DESCRIPTION AND SPECIFICATIONS 1.1 Features and Applications 1.2 Specifications - General 1.3 Specifications - Oxygen 1.4 Specifications - Oxygen 1.5 Specifications - Total Chlorine 1.6 Specifications - Ozone 1.7 Specifications - Ozone 1.7 Specifications - Ozone 1.7 Specifications - Ozone 1.7 Specifications - Ozone 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model Hya38 and Gx448 Sensors 4.0 INTRENSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS	Section	Title
1.1 Features and Applications. 1.2 Specifications - General. 1.3 Specifications - Free Chlorine. 1.4 Specifications - Total Chlorine. 1.5 Specifications - Percent Oxygen in Gas 1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection. 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop. 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A Oxygen, Chlorine) Sensors and pH Sensors. 3.2 Wiring Model 499A Oxygen, Chlorine) Sensors and pH Sensors. 3.3 Wiring Model 499A CL-01 (Free Chlorine) Sensors and pH Sensors. 3.4 Diagnostic Messages. 5.1 Display Screens 5.1 Display Screens 5.2 </th <th>1.0</th> <th>DESCRIPTION AND SPECIFICATIONS</th>	1.0	DESCRIPTION AND SPECIFICATIONS
1.2 Specifications - General. 1.3 Specifications - Oxygen 1.4 Specifications - Trea Chlorine. 1.5 Specifications - Total Chlorine. 1.6 Specifications - Ozone 1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.3 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.4 Power Supply/Current Loop 3.5 Wiring Model 499A OL-01 (Free Chlorine) Sensors and pH Sensors 3.6 Wiring Model 499A OL-01 (Free Chlorine) Sensors and pH Sensors 5.1 Intrared Remote Controller (IRC) - Key	1.1	Features and Applications
1.3 Specifications - Oxygen 1.4 Specifications - Free Chlorine 1.5 Specifications - Otal Chlorine 1.6 Specifications - Ozone 1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold </td <td>1.2</td> <td>Specifications - General</td>	1.2	Specifications - General
1.4 Specifications - Free Chlorine 1.5 Specifications - Ozone 1.6 Specifications - Percent Oxygen in Gas 1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security	1.3	Specifications - Oxygen
1.5 Specifications - Total Chlorine	1.4	Specifications - Free Chlorine
1.6 Specifications - Ozone 1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection. 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop. 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A CL-01 (Free Chlorine) Sensors and pH Sensors. 3.3 Wiring Model Hx438 and Gx448 Sensors. 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens. 5.2 Infrared Remote Controller (IRC) - Key Functions. 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475	1.5	Specifications - Total Chlorine
1.7 Specifications - Percent Oxygen in Gas 1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator <td>1.6</td> <td>Specifications - Ozone</td>	1.6	Specifications - Ozone
1.8 Transmitter Display During Calibration and Programming 1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator	1.7	Specifications - Percent Oxygen in Gas
1.9 Infrared Remote Controller 1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Temperatur	1.8	Transmitter Display During Calibration and Programming
1.10 HART Communication 1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 General 7.2 Default Settings <td>1.9</td> <td>Infrared Remote Controller</td>	1.9	Infrared Remote Controller
1.11 Ordering Information 1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection. 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop. 3.0 WIRING. 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors. 3.3 Wiring Model Hx438 and Gx448 Sensors. 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS. 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions. 5.3 Menu Tree. 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Temperature Settings.	1.10	HART Communication
1.12 Accessories 2.0 INSTALLATION 2.1 Unpacking and Inspection. 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop. 3.0 WIRING. 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Penogramming 7.3 Output Ranging 7.4 Temperature Settings	1.11	Ordering Information
2.0 INSTALLATION 2.1 Unpacking and Inspection. 2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop. 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499A OL-01 (Free Chlorine) Sensors and pH Sensors. 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS. 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions. 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Default Settings. 7.3 Output Ranging 7.4 Temperature Settings.	1.12	Accessories
2.1 Unpacking and Inspection	2.0	INSTALLATION
2.2 Orienting the Display Board 2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Temperature Settings	2.1	Unpacking and Inspection
2.3 Installation 2.4 Power Supply/Current Loop 3.0 WIRING 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.4 Temperature Settings	2.2	Orienting the Display Board
2.4 Power Supply/Current Loop 3.0 WIRING. 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors 3.3 Wiring Model Hx438 and Gx448 Sensors 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.0 PROGRAMMING 7.1 General 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings	2.3	Installation
3.0 WIRING	2.4	Power Supply/Current Loop
 3.1 Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors	3.0	WIRING
 3.2 Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors. 3.3 Wiring Model Hx438 and Gx448 Sensors. 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS. 5.0 DISPLAY AND OPERATION. 5.1 Display Screens. 5.2 Infrared Remote Controller (IRC) - Key Functions. 5.3 Menu Tree. 5.4 Diagnostic Messages. 5.5 Security. 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator. 6.2 Connecting the HART Communicator. 6.3 Operation. 7.0 PROGRAMMING. 7.1 General. 7.2 Default Settings. 7.3 Output Ranging. 7.4 Temperature Settings. 	3.1	Wiring Model 499A Oxygen, Chlorine, and Ozone Sensors
 3.3 Wiring Model Hx438 and Gx448 Sensors	3.2	Wiring Model 499ACL-01 (Free Chlorine) Sensors and pH Sensors
 4.0 INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS. 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.0 PROGRAMMING 7.1 General 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings 	3.3	Wiring Model Hx438 and Gx448 Sensors
 5.0 DISPLAY AND OPERATION 5.1 Display Screens 5.2 Infrared Remote Controller (IRC) - Key Functions 5.3 Menu Tree 5.4 Diagnostic Messages 5.5 Security 5.6 Using Hold 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.0 PROGRAMMING 7.1 General 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings 	4.0	INTRINSICALLY SAFE AND EXPLOSION PROOF INSTALLATIONS
 5.1 Display Screens	5.0	DISPLAY AND OPERATION
 5.2 Infrared Remote Controller (IRC) - Key Functions	5.1	Display Screens
 5.3 Menu Tree	5.2	Infrared Remote Controller (IRC) - Key Functions
 5.4 Diagnostic Messages	5.3	Menu Tree
 5.5 Security	5.4	Diagnostic Messages
 5.6 Using Hold	5.5	Security
 6.0 OPERATION WITH MODEL 275, 375, OR 475 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator. 6.3 Operation 7.0 PROGRAMMING. 7.1 General 7.2 Default Settings. 7.3 Output Ranging. 7.4 Temperature Settings. 	5.6	Using Hold
 6.1 Note on 275, 375, or 475 HART Communicator 6.2 Connecting the HART Communicator 6.3 Operation 7.0 PROGRAMMING 7.1 General 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings 	6.0	OPERATION WITH MODEL 275, 375, OR 475
 6.2 Connecting the HART Communicator	6.1	Note on 275, 375, or 475 HART Communicator
 6.3 Operation 7.0 PROGRAMMING. 7.1 General. 7.2 Default Settings. 7.3 Output Ranging. 7.4 Temperature Settings. 	6.2	Connecting the HART Communicator
 7.0 PROGRAMMING 7.1 General 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings 	6.3	Operation
 7.1 General 7.2 Default Settings	7.0	PROGRAMMING
 7.2 Default Settings 7.3 Output Ranging 7.4 Temperature Settings 	7.1	General
7.3 Output Ranging7.4 Temperature Settings	7.2	Default Settings
7.4 Temperature Settings	7.3	Output Ranging
	7.4	Temperature Settings

TABLE OF CONTENTS CONT'D

Section	Title	Page
7.0	PROGRAMMING (continued)	33
7.5	Display	39
7.6	Factory Default	41
7.7	HART	41
7.8	Calibration SetUp	42
7.9	Line Frequency	44
7.10	pH Measurement	45
7.11	Barometric Pressure	48
8.0	CALIBRATION — TEMPERATURE	49
8.1	Introduction	49
8.2	Procedure	50
9.0	CALIBRATION — OXYGEN	51
9.1	Introduction	51
9.2	Procedure — Zeroing the Sensor	52
9.3	Procedure — Air Calibration	53
9.4	Procedure — In-Process Calibration	54
10.0	CALIBRATION — FREE CHLORINE	55
10.1	Introduction	55
10.2	Procedure — Zeroing the Sensor	56
10.3	Procedure — Full Scale Calibration	57
10.4	Dual Slope Calibration	58
11.0	CALIBRATION — TOTAL CHLORINE	60
11.1	Introduction	60
11.2	Procedure — Zeroing the Sensor	61
11.3	Procedure — Full Scale Calibration	62
11.4	Dual Slope Calibration	63
12.0	CALIBRATION — OZONE	65
12.1		65
12.2 12.3	Procedure — Zeroing the Sensor Procedure — Full Scale Calibration	66 67
40.0		6 0
13.0	CALIBRATION — pH	60
13.1		60
13.2	Procedure — Auto Calibration	69
13.3	Procedure — Manual Calibration	70
13.4		/1
13.5	рн Siope Aajustment	72

TABLE OF CONTENTS CONT'D

Section	Title	Page
14.0	CALIBRATION — CURRENT OUTPUT	73
14.1	General	73
14.2	Procedure	73
45.0	DIA ONOOTIOO	- 4
15.0		74
15.1		74
15.2	Diagnostic Messages for Dissolved Oxygen	74
15.3	Diagnostic Messages for Ozone and Total Chlorine	74
15.4	Diagnostic Messages for Free Chlorined	75
16.0	TROUBLESHOOTING	76
16.1	Warning and Fault Messages	76
16.2	Troubleshooting When a Warning or Fault Message is Showing	77
16.3	Temperature Measurement and Calibration Problems	81
16.4	, Oxygen Measurement and Calibration Problems	82
16.5	Free Chlorine Measurement and Calibration Problems	84
16.6	Total Chlorine Measurement and Calibration Problems	86
16.7	Ozone Measurement and Calibration Problems	87
16.8	pH Measurement and Calibration Problems	89
16.9	Simulating Input Currents — Dissolved Oxygen	91
16.10	Simulating Input Currents — Chlorine and Ozone	91
16.11	Simulating Inputs — pH	92
16.12	Simulating Temperature	93
16.13	Measuring Reference Voltage	94
17 0	MAINTENANCE	95
17.0		95
17.1	Transmitter Maintonanco	90
11.2		90
18.0	RETURN OF MATERIAL	97

Appendix	Title	Page
Α	BAROMETRIC PRESSURE AS A FUNCTION OF ALTITUDE	98
В	MODEL 4000 PERCENT OXYGEN SENSOR FOR MEASUREMENT IN GAS	99

LIST OF TABLES

Number	Title	Page
7-1	Default Settings	35
17-1	Replacement Parts for Model 5081-A Transmitter	96

LIST OF FIGURES

Number	Title	Pag			
1-1	Transmitter Display During Calibration and Programming				
1-2	Infrared Remote Controller				
1-3	HART Communication				
1-4	Model 5081-A Mounting and Dimensional Drawings	5			
2-1	Mounting the Model 5081-A on a Flat Surface	8			
2-2	Using the Pipe Mounting Kit to attach the Model 5081-A to a pipe	9			
2-3	Load/Power Supply Requirements	10			
2-4	Power Supply/Current Loop Wiring	10			
3-1	Amperometric sensors with standard cable	11			
3-2	Amperometric sensors with ontimum EMI/REI cable or Variopol cable	11			
3-3	Free Chlorine sensor with standard cable and 399VP-09 pH sensor without	12			
3-4	Free Chlorine sensor with standard cable and 399-14 pH sensor with internal	12			
3-5	Free Chlorine sensor with standard cable and 399-09-62 pH sensor without	13			
3-6	Free Chlorine sensor with optimum EMI/RFI cable or Variopol cable and 399VP-09	13			
3_7	Free Chlorine sensor with ontimum EMI/REL cable or Varional cable and 399-14	10			
0-1	nH sensor with internal preamplifier	13			
3-8	Free Chlorine sensor with optimum EMI/REL cable or Varionol cable and 399-09-62	10			
00	pH sensor without internal preamplifier	13			
3-9	Hx438 and Gx448 sensors	14			
4-1	FMRC Explosion-Proof Installation	15			
4-2	FM Intrinsically Safe Installation Label	16			
4-3	FM Intrinsically Safe Installation	17			
4-4	CSA Intrinsically Safe Installation Label	19			
4-5	CSA Intrinsically Safe Installation	20			
4-6	ATEX Intrinsically Safe Installation Label	22			
5-1	Process Display Screen	23			
5-2	Program Display Screen	23			
5-3	Infrared Remote Controller and label	24			
5-4	Menu Tree	26			
6-1	Connecting the HART Communicator	27			
6-2	Menu Tree (HART)	29			
9-1	Sensor Current as a Function of Dissolved Oxygen Concentration	51			
10-1	Sensor Current as a Function of Free Chlorine Concentration	56			
10-2	Dual Slope Calibration	58			
11-1	Determination of Total Chlorine	60			
11-2	Sensor Current as a Function of Total Chlorine Concentration	60			
11-3	Dual Slope Calibration	63			
12-1	Sensor Current as a Function of Ozone Concentration	65			
13-1	Calibration Slope and Offset	68			
14-1	Current Output Calibration	73			
16-1	Simulate dissolved oxygen	91			
16-2	Simulate chlorine and ozone	91			
16-3	Simulate pH	92			
16-4	Three-wire RTD Configuration	92			
16-5	Simulating RTD Inputs	93			
16-6	Checking for a Poisoned Reference Electrode	94			
17-1	Exploded View of Model 5081-A Transmitter	95			

SECTION 1.0 DESCRIPTION AND SPECIFICATIONS

- MEASURES dissolved oxygen (ppm and ppb level), free chlorine, total chlorine, and ozone.
- SECOND INPUT FOR pH SENSOR ALLOWS AUTOMATIC pH CORRECTION for free chlorine measurement. No expensive reagents needed.
- AUTOMATIC BUFFER RECOGNITION for pH calibration.
- ROBUST NEMA 4X ENCLOSURE protects the transmitter from hostile environments.
- COMPATIBLE WITH HART[®] communication protocol and AMS (Asset Management Solutions).

The Model 5081-A Transmitter with the appropriate sensor measures dissolved oxygen (ppm and ppb level), free chlorine, total chlorine, and ozone in a variety of process liquids and percent oxygen in gas. The transmitter is compatible with Rosemount Analytical 499A amperometric sensors for oxygen, chlorine, and ozone; and with Hx438 and Gx448 steam-sterilizable oxygen sensors.

For free chlorine measurements, both automatic and manual pH correction are available. pH correction is necessary because amperometric chlorine sensors respond only to hypochlorous acid, not free chlorine, which is the sum of hypochlorous acid and hypochlorite ion. To measure free chlorine, most competing instruments require an acidified sample. Acid lowers the pH and converts hypochlorite ion to hypochlorous acid. The Model 5081-A eliminates the need for messy and expensive sample conditioning by using the sample pH to correct the chlorine sensor signal. If the pH is relatively constant, a fixed pH correction can be used. If the pH is greater than 7.0 and fluctuates more than about 0.2 units, continuous measurement of pH and automatic pH correction is necessary. Corrections are valid to pH 9.5.

The transmitter fully compensates oxygen, ozone, free chlorine, and total chlorine readings for changes in membrane permeability caused by temperature changes.

For pH measurements — pH is available with free chlorine only — the 5081-A features automatic buffer

recognition and stabilization check. Buffer pH and temperature data for commonly used buffers are stored in the analyzer. Glass impedance diagnostics warn the user of an aging or failed pH sensor.

The transmitter has a rugged, weatherproof, corrosion-resistant enclosure (NEMA 4X and IP65) of epoxy-painted aluminum. The enclosure also meets FM and CSA explosion-proof standards.

Circuits in the Model 5081-A transmitter are designed and built to be intrinsically safe when used with the appropriate safety barrier.

The 4 to 20 mA signal is fully scalable over the linear range of the sensor. During hold and fault conditions, the output can be programmed to remain at the last value or go to any value between 3.80 and 22.00 mA.

Measurement results are displayed in 0.8 in. (20 mm) high seven-segment numerals. Temperature and pH (chlorine only) appear in 0.3 inch (7 mm) high digits.

Remote communications with the 5081-A is easy. The hand-held, push button infrared remote controller works from as far away as six feet. The 5081-A works with the 275, 375, or 475 HART hand-held communicator or with any host that supports the HART protocol.

[®]HART is a registered trademark of the HART Communication Foundation.

1.2 SPECIFICATIONS - GENERAL

Housing: Cast aluminum with epoxy coating. NEMA 4X (IP65). Neoprene O-ring cover seals. 160.5 mm x 175.3 mm x 161.3 mm (6.3 in. x 6.9 in. x 6.4 in.)

Conduit Openings: 3/4-in. FNPT

Ambient Temperature: -4 to 149°F (-20 to 65°C)

Storage Temperature: -22 to 176°F (-30 to 80°C)

Relative Humidity: 0 to 95% (non-condensing)

Weight/Shipping Weight: 10 lb/10 lb (4.5/5.0 kg)

- **Display:** Two-line LCD; first line shows process variable (pH, ORP, conductivity, % concentration, oxygen, ozone, or chlorine), second line shows process temperature and output current. For pH/chlorine combination, the second line can be toggled to show pH. Fault and warning messages, when triggered, alternate with temperature and output readings.
- First line: 7 segment LCD, 0.8 in. (20 mm) high.

Second line: 7 segment LCD, 0.3 in. (7mm) high.

Display board can be rotated 90 degrees clockwise or counterclockwise.

During calibration and programming, messages and prompts appear in the second line.

Temperature resolution: 0.1°C

Input ranges: 0-330 nA, 0.3-4μA, 3.7-30 μA, 27-100 μA

Repeatability (input): ±0.1% of range

Linearity (input): ±0.3% of range

- **Temperature range:** 0-100°C (0-150°C for steam sterilizable sensors)
- Temperature accuracy using RTD: ±0.5°C between 0 and 50°C, ±1°C above 50°C
- Temperature accuracy using 22k NTC: ±0.5°C between 0 and 50°C, ±2°C above 50°C

Digital Communications:

HART: PV, SV, TV, and 4V assignable to measurement (oxygen, ozone, or chlorine), temperature, pH, and sensor current.

RFI/EMI: EN-61326

Power & Load Requirements:

Supply voltage at the transmitter terminals should be at least 12 Vdc. Power supply voltage should cover the voltage drop on the cable plus the external load resistor required for HART communications (250 Ω minimum). Minimum power supply voltage is 12 Vdc. Maximum power supply voltage is 42.4 Vdc (30 Vdc for intrinsically safe operation). The graph shows the supply voltage required to maintain 12 Vdc (upper line) and 30 Vdc (lower line) at the transmitter terminals when the current is 22 mA.

Analog Output: Two-wire, 4-20 mA output with superimposed HART digital signal. Fully scalable over the operating range of the sensor.

Output accuracy: ±0.05 mA

HAZARDOUS LOCATION APPROVAL:

Intrinsic Safety:

Class I, II, III, Div. 1 Groups A-G T4 Tamb = 70°C

Exia Entity Class I, Groups A-D Class II, Groups E-G Class III T4 Tamb = 70°C

C C 0600 II 1 G Baseefa02ATEX1284 EEx ia IIC T4 Tamb = -20°C to +65°C

IECEx BAS 09.0159X Ex ia IIC T4 Ga

ATEX and IECEx Special Conditions for Use: The model 5081 enclosure is made of aluminum alloy and is given a protective polyurethane paint finish. However, care should be taken to protect it from impact or abrasion if located in a zone 0 hazardous area.

Non-Incendive:

Class I, Div. 2, Groups A-D Dust Ignition Proof Class II & III, Div. 1, Groups E-G NEMA 4X Enclosure

Class I, Div. 2, Groups A-D Suitable for Class II, Div. 2, Groups E-G T4 Tamb = 70°C **Explosion-Proof:**

Class I, Div. 1, Groups B-D Class II, Div. 1, Groups E-G Class III, Div. 1

S

Class I, Groups B-D Class II, Groups E-G Class III Tamb = 65°C max

1.3 SPECIFICATIONS — OXYGEN

- Measurement Range: 0-99 ppm (mg/L), 0-200% saturation
- Resolution: 0.01 ppm, 0.1 ppb for 499A TrDO sensor
- Temperature correction for membrane permeability: automatic between 0 and 50°C (can be disabled)
- Calibration: air calibration (user must enter barometric pressure) or calibration against a standard instrument

RECOMMENDED SENSORS — OXYGEN:

Model 499A DO-54 for ppm level

Model 499A TrDO-54 for ppb level

Hx438 and Gx448 steam-sterilizable oxygen sensors

1.4 SPECIFICATIONS — FREE CHLORINE

Measurement Range: 0-20 ppm (mg/L) as Cl₂

- **Resolution:** 0.001 ppm (Autoranges at 0.999 to 1.00 and 9.99 to 10.0)
- Temperature correction for membrane permeability: automatic between 0 and 50°C (can be disabled)
- **pH Correction:** Automatic between pH 6.0 and 9.5. Manual pH correction is also available.
- Calibration: against grab sample analyzed using portable test kit.

RECOMMENDED SENSOR — FREE CHLORINE:

Model 499A CL-01-54

SPECIFICATIONS — pH

Application: pH measurement available with free chlorine only

Measurement Range: 0-14 pH

Resolution: 0.01 pH

Sensor Diagnostics: Glass impedance (for broken or aging electrode) and reference offset. Reference impedance (for fouled reference junction) is not available. Repeatability: ±0.01 pH at 25°C

RECOMMENDED SENSOR — pH:

Use Model 399-09-62, 399-14, or 399VP-09.

See pH sensor product data sheet for complete ordering information.

1.5 SPECIFICATIONS — TOTAL CHLORINE

Measurement Range: 0-20 ppm (mg/L) as Cl₂

Resolution: 0.001 ppm (Autoranges at 0.999 to 1.00 and 9.99 to 10.0)

Temperature correction for membrane permeability: automatic between 5 and 35°C (can be disabled)

Calibration: against grab sample analyzed using portable test kit.

RECOMMENDED SENSOR — TOTAL CHLORINE:

Model 499A CL-02-54 (must be used with SCS 921)

1.6 SPECIFICATIONS — OZONE

Measurement Range: 0-10 ppm (mg/L)

Resolution: 0.001 ppm (Autoranges at 0.999 to 1.00 and 9.99 to 10.0)

Temperature correction for membrane permeability: automatic between 5 and 35°C (can be disabled)

Calibration: against grab sample analyzed using portable test kit.

RECOMMENDED SENSOR — OZONE:

Model 499A OZ-54

1.7 SPECIFICATIONS — PERCENT OXYGEN IN GAS

Measurement Range: 0-25% Oxygen

Resolution: 0.1% - TBD

Calibration: air calibration (automatic meas urement of barometric pressure with internal pressure sensor) - TBD

Sample Pressure: 0 to 50 PSIG

Sample Temperature: 32 to 110°F

RECOMMENDED SENSOR — PERCENT OXYGEN IN GAS

Model 4000 Percent Oxygen Sensor

1.7 TRANSMITTER DISPLAY DURING CALI-BRATION AND PROGRAMMING (Figure 1-1)

- 1. Continuous display of oxygen, chlorine, or ozone reading.
- 2. Units: ppm, ppb, or % saturation.
- 3. Current menu appears here.
- 4. Submenus, prompts, and diagnostic readings appear hear.
- 5. Commands available in each submenu or at each prompt appear here.
- 6. Hold appears when the transmitter is in hold.
- 7. Fault appears when the transmitter detects a sensor or instrument fault.
- 8. C flashes during HART communication.

1.8 INFRARED REMOTE CONTROLLER (Figure 1-2)

- 1. Pressing a menu key allows the user access to calibrate, program, or diagnostic menus.
- 2. Press ENTER to store data and settings. Press NEXT to move from one submenu to the next. Press EXIT to leave without storing changes.
- 3. Use the editing keys to scroll through lists of allowed settings or to change a numerical setting to the desired value.
- Pressing HOLD puts the transmitter in hold and sends the output current to a pre-programmed value. Pressing RESET causes the transmitter to abandon the present operation and return to the main display.
- 5. See page 26 for Hazardous Locations information.

1.9 HART COMMUNICATION (Figure 1-3)

The 275, 375, or 475 HART Communicator is a hand-held device that provides a common link to all HART SMART instruments and allows access to AMS (Asset Management Solutions). Use the HART communicator to set up and control the 5081-A and to read measured variables. Press ON to display the on-line menu. All setup menus are available through this menu.

1.10 ORDERING INFORMATION

The **Model 5081-A Transmitter** is intended for the determination of oxygen (ppm and ppb level), free chlorine, total chlorine, and ozone. For free chlorine measurements, which often require continuous pH correction, a second input for a pH sensor is available. The transmitter is housed in a weatherproof, corrosion-resistant enclosure. A hand-held infrared remote controller is required to configure and calibrate the transmitter.

MODEL 5081-A	TWO-WIRE MICROPROCESSOR TRANSMITTER		
CODE	REQUIRED SELECTION		
HT	Analog 4-20 mA output with superimposed HART digital signal		
FF	Foundation Fieldbus digital output (Available in May, 2002)		
CODE	REQUIRED SELECTION		
20	Infrared remote controller included		
21	Infrared remote controller not included		
	-		
CODE	AGENCY APPROVALS		
60	No approval		
67	FM approved intrinsically safe and non-incendive (when used with approved sensor and safety barrier)		
68	CSA approved intrinsically safe and non-incendive (when used with approved sensor and safety barrier)		
69	CENELEC approved intrinsically safe (when used with approved sensor and safety barrier)		
5081-A			

1.11 ACCESSORIES

- **POWER SUPPLY:** Use the Model 515 Power Supply to provide dc loop power to the transmitter. The Model 515 provides two isolated sources at 24Vdc and 200 mA each. For more information refer to product data sheet 71-515.
- **ALARM MODULE:** The Model 230A alarm Module receives the 4-20 mA signal from the 5081-A transmitter and activates two alarm relays. High/high, low/low, and high/low are available. Hysteresis (deadband) is also adjustable. For more information, refer to product data sheet 71-230A.
- **HART COMMUNICATOR:** The 275, 375, or 475 HART communicator allows the user to view measurement values as well as to program and configure the transmitter. The 275, 375, or 475 attaches to any wiring terminal across the output loop. A minimum 250 Ω load must be between the power supply and transmitter. Order the communicator from Rosemount Measurement. Call (800) 999-9307.

MODEL/PN	DESCRIPTION		
515	DC loop power supply (see product data sheet 71-515)		
230A	Alarm module (see product data sheet 71-230A)		
23572-00	Infrared remote controller (required, one controller can operate any 5081 transmitter)		
2002577	2-in. pipe mounting kit		
9241178	Stainless steel tag, specify marking		

ACCESSORIES

SECTION 2.0 INSTALLATION

- 2.1 Unpacking and inspection
- 2.2 Orienting the display board
- 2.3 Installation
- 2.4 Power supply/current loop

2.1 UNPACKING AND INSPECTION

Inspect the shipping container. If it is damaged, contact the shipper immediately for instructions. Save the box. If there is no apparent damage, remove the transmitter. Be sure all items shown on the packing list are present. If items are missing, notify Rosemount Analytical immediately.

2.2 ORIENTING THE DISPLAY BOARD

The display board can be rotated 90 degrees, clockwise or counterclockwise, from the original position. To reposition the display:

- 1. Loosen the cover lock nut until the tab disengages from the end, Unscrew the cap.
- 2. Remove the three bolts holding the circuit board stack.
- 3. Lift and rotate the display board 90 degrees into the desired position.
- 4. Position the display board on the standoffs. Replace and tighten the bolts.
- 5. Replace the end cap.

2.3 INSTALLATION

2.3.1 General information

- 1. The transmitter tolerates harsh environments. For best results, install the transmitter in an area where temperature extremes, vibrations, and electromagnetic and radio frequency interference are minimized or absent.
- To prevent unintentional exposure of the transmitter circuitry to the plant environment, keep the cover lock in place over the circuit end cap. See Figure 2-1. To remove the circuit end cap loosen the lock nut until the tab disengages from the cap. Then unscrew the cover.
- 3. The transmitter has two ³/₄-inch conduit openings, one on each side of the housing. See Figure 2-1.
- 4. Use weathertight cable glands to keep moisture out of the analyzer. If both a chlorine and pH sensor are being used, install a cable gland with a dual hole seal insert.
- 5. If conduit is used, plug and seal the connections at the transmitter housing to prevent moisture from getting inside the transmitter.

NOTE

Moisture allowed to accumulate in the housing can affect the performance of the transmitter and may void the warranty.

2.3.2 Mounting on a flat surface.

2.3.3 Pipe Mounting.

2.4 POWER SUPPLY/CURRENT LOOP

2.4.1 Power Supply and Load Requirements.

Refer to Figure 2-3.

The supply voltage must be at least 12.0 Vdc at the transmitter terminals. The power supply must be able to cover the voltage drop on the cable as well as the load resistor (250 Ω minimum) required for HART communications. The maximum power supply voltage is 42.0 Vdc. For intrinsically safe installations, the maximum power supply voltage is 30.0 Vdc. The graph shows load and power supply requirements. The upper line is the power supply voltage needed to provide 12 Vdc at the transmitter terminals for a 22 mA current. The lower line is the power supply voltage needed to provide 30 Vdc for a 22 mA current.

The power supply must provide a surge current during the first 80 milliseconds of startup. The maximum current is about 24 mA.

For digital communications, the load must be at least 250 ohms. To supply the 12.0 Vdc lift off voltage at the transmitter, the power supply voltage must be at least 17.5 Vdc.

2.4.2 Power Supply-Current Loop Wiring.

Refer to Figure 2-4.

Run the power/signal wiring through the opening nearest terminals 15 and 16. Use shielded cable and ground the shield at the power supply. To ground the transmitter, attach the shield to the grounding screw on the inside of the transmitter case. A third wire can also be used to connect the transmitter case to earth ground.

NOTE

For optimum EMI/RFI immunity, the power supply/output cable should be shielded and enclosed in an earth-grounded metal conduit.

Do not run power supply/signal wiring in the same conduit or cable tray with AC power lines or with relay actuated signal cables. Keep power supply/signal wiring at least 6 ft (2 m) away from heavy electrical equipment.

SECTION 3.0 SENSOR WIRING

- 3.1 Wiring Model 499A oxygen, chlorine, and ozone sensors
- 3.2 Wiring Model 499ACL-01 (free chlorine) and pH sensors

NOTE

The Model 5081-A transmitter leaves the factory configured for use with the Model 499ADO sensor (ppm dissolved oxygen). If a 499ADO sensor is not being used, turn to Section 7.5.3 and configure the transmitter for the desired measurement (ppb oxygen, oxygen measured using a steam-sterilizable sensor, free chlorine, total chlorine, or ozone) before wiring the sensor to the transmitter. Operating the transmitter and sensor for longer than five minutes while the transmitter is improperly configured will greatly increase the stabilization time for the sensor.

Be sure to turn off power to the transmitter before wiring the sensor.

3.1 WIRING MODEL 499A OXYGEN, CHLORINE, AND OZONE SENSORS

All 499A sensors (499ADO, 499ATrDO, 499ACL-01, 499ACL-02, and 499AOZ) have identical wiring.

Use the pigtail wire and wire nuts provided with the sensor when more than one wire must be attached to a single terminal.

3.2 WIRING MODEL 499ACL-01 (Free Chlorine) SENSORS AND pH SENSORS

If free chlorine is being measured and the pH of the liquid varies more than 0.2 pH unit, a continuous correction for pH **must** be applied to the chlorine reading. Therefore, a pH sensor must be wired to the transmitter. This section gives wiring diagrams for the pH sensors typically used.

When using the 499ACL-01 (free chlorine) sensor with a pH sensor, use the RTD in the pH sensor for measuring temperature. DO NOT use the RTD in the chlorine sensor.

The pH sensor RTD is needed for temperature measurement during buffer calibration. During normal operation, the RTD in the pH sensor provides the temperature measurement required for the free chlorine membrane permeability correction.

Refer to the table to select the appropriate wiring diagram. Most of the wiring diagrams require that two or more shield wires be attached to a single terminal. Use the pigtail wire and wire nuts provided with the chlorine sensor to make the connection. **Insulate and tape back unused wires.**

Free chlorine sensor cable	pH sensor	Figure
Standard	399VP-09	3-3
Standard	399-14	3-4
Standard	399-09-62	3-5
EMI/RFI or Variopol	399VP-09	3-6
EMI/RFI or Variopol	399-14	3-7
EMI/RFI or Variopol	399-09-62	3-8

SOL PH GND GUARD REF IN ph IN 9 REF GUARD 8 -5 V 7 10 6 1 RTD IN +5 V 5 2 RTD SNS ANODE 13 4 14 CATHODE RTD RTN 3 15 HT/FF (-) +0.8V 2 16 HT/FF (+) 1 YELLOW/GREEN - JUMPER YELLOW BROWN CLEAR BLUE -FIGURE 3-9. Hx438 and Gx448 Sensors.

3.3 WIRING Hx438 AND Gx448 SENSORS

FIGURE 4-1. FMRC Explosion-Proof Installation

FIGURE 4-2. FM Intrinsically Safe Installation Label

FIGURE 4-3. FM Intrinsically Safe Installation (1 of 2)

FIGURE 4-3. FM Intrinsically Safe Installation (2 of 2)

18

FIGURE 4-4. CSA Intrinsically Safe Installation Label

FIGURE 4-5. CSA Intrinsically Safe Installation (1 of 2)

FIGURE 4-5. CSA Intrinsically Safe Installation (2 of 2)

FIGURE 4-6. ATEX Intrinsically Safe Installation Label

SECTION 5.0 DISPLAY AND OPERATION

- 5.1 Display Screens
- 5.2 Infrared Remote Controller (IRC) Key Functions
- 5.3 Menu Tree
- 5.4 Diagnostic Messages
- 5.5 Security
- 5.6 Using Hold

5.1 DISPLAY SCREENS

Figure 5-1 shows the process display screen. Figure 5-2 shows the program display screen.

5.2 INFRARED REMOTE CONTROLLER (IRC) - KEY FUNCTIONS

The infrared remote controller is used to calibrate and program the transmitter and to display diagnostic messages. See Figure 5-3 for a description of the function of the keys.

Hold the IRC within 6 feet of the transmitter, and not more than 15 degrees from the center of the display window.

5.3 MENU TREE

The Model 5081-A transmitter has three menus: CALIBRATE, PROGRAM, and DIAGNOSE. Under the Calibrate and Program menus are several submenus. Under each submenu are a number of prompts. The DIAGNOSE menu shows the reader diagnostic variables that are useful in troubleshooting. Figure 5-4, on the following page, shows the complete menu tree.

5.4 DIAGNOSTIC MESSAGES

Whenever a warning or fault limit has been exceeded, the transmitter displays diagnostic fault messages. The display alternates between the main display and the diagnostic message. See Section 15.0 for the meaning of fault and warning messages.

5.5 SECURITY

5.5.1 Purpose. Use the security code to prevent program settings and calibrations from accidentally being changed. To program a security code, refer to Section 7.5.

PROGRAM		
Id	000	-
EXIT	ENTER	

- 1. If settings are protected with a security code, pressing PROG or CAL on the remote controller causes the **Id** screen to appear.
- 2. Use the arrow keys to enter the security code. Press ENTER.
- 3. If the security code is correct, the first submenu appears. If the code is incorrect, the process display reappears.
- 4. To retrieve a forgotton code number, enter 555 at the **Id** prompt. The present security code will appear.

5.6 USING HOLD

During calibration, the sensor may be exposed to solutions having concentration outside the normal range of the process. To prevent false alarms and undesired operation of chemical dosing pumps, place the transmitter in hold during calibration. Activating hold keeps the transmitter output at the last value or sends the output to a previously determined value. See Section 7.3, Output Ranging, for details.

After calibration, reinstall the sensor in the process stream. Wait until readings have stabilized before deactivating Hold.

To activate or deactivate Hold:

- 1. Press HOLD on the remote controller.
- 2. The HoLd prompt appears in the display. Press
 or
 or
 or
 or to toggle Hold between On and OFF.
- 3. Press ENTER to save.

SECTION 6.0 OPERATION WITH 275/375/475

- 6.1 Note on 275/375/475 HART Communicator
- 6.2 Connecting the HART Communicator
- 6.3 Operation

6.1 Note on 275/375/475 HART Communicator

The 275/375/475 HART Communicator is a product of Rosemount Measurement. This section contains selected information on using the 275/375/475 with the Rosemount Analytical Model 5081-A Transmitter. For complete information on the 275/375/475 Communicator, see the 275/375/475 instruction manual. For technical support on the 275/375/475 Communicator, call Rosemount Measurement at (800) 999-9307 within the United States. Support is available worldwide on the internet at *rosemount.com*.

6.2 Connecting the HART Communicator

Figure 6-1 shows how the 275/375/475 HART Communicator connects to the output lines from the Model 5081-A Transmitter.

6.3 Operation

6.3.1 Off-line and On-line Operation

The 275/375/475 Communicator features off-line and on-line communications. On-line means the communicator is connected to the transmitter in the usual fashion. While the communicator is on line, the operator can view measurement data, change program settings, and read diagnostic messages. Off-line means the communicator is not connected to the transmitter. When the communicator is off line, the operator can still program settings into the communicator. Later, after the communicator has been connected to a transmitter, the operator can transfer the programmed settings to the transmitter. Off-line operation permits settings common to several transmitters to be easily stored in all of them.

6.3.2 Use of Infrared Remote Controller

In multi-drop operation, polling addresses can be more conveniently set and debugging more conveniently performed using the infrared remote controller.

PROGR	AM		◄	1.	Press PROG on the infrared remote controller.
HArt					
EXIT	NEXT	ENTER		2.	Press NEXT until the screen at left appears. Press ENTER.
Addres	NEXT	ENTER	←	3.	The HART menu tree is shown at left. Use the arrow keys to change set- tings. Press ENTER to store. Press NEXT to move to the next item on the
PreAM))	05			menu.
EXIT	NEXT	ENTER			
burSt		0ff			
EXIT	NEXT	ENTER			
kl	000	0000			
EXIT	NEXT	ENTER			

6.3.3 Menu Tree

Figure 6-2 shows the menu tree for the Model 5081-A transmitter. Figure 6-3 shows the menu tree for the Model 5081-A transmitter.

Device setup	
Process variables	
View Fld Dev Vars	
Oxygen *	
Temp	
Snsr Cur	
рН #	
pH mV #	
GI #	
Temp Res	
View PV-Analog 1	
PV is Oxygen *	
PV	
PV % rnge	
PV AO	
View SV	
SV is Temp **	
SV	
View TV	
TV is Snsr Cur ***	
4V IS TEMP Res	
4v View Statue	
View Status	
Diag/Service	
View Status	
Master Reset	
Fault History	
Hold Mode	
Calibration	
Zero Main Sensor	
Air Calibration	
In-process Cal	
Dual Range Cal #####	
Adjust Temperature	
pH 2-Pt Cal #	
pH Auto Cal #	
Standardize pH #	
D/A trim	

FIGURE 6-2. Menu Tree (HART)

Diagnostic Vars Oxygen **Snsr Cur** Sensitivity Zero Current pH Value # pH mV # pH Slope # pH Zero Offset # GI # Temp **Temp Res Noise rejection** Basic setup Tag **PV Range Values PV LRV PV URV** PV PV % rnge **Device information** Distributor Model Dev id Taq Date Write protect Snsr text Descriptor Message **Revision #'s Universal rev** Fld dev rev Software rev Hardware rev **Detailed setup** Sensors Oxygen * Oxygen Unit [ppm, ppb, %sat] *, ***** Oxygen Sensor [ADO, TRDO, SSDO1, SSDO2] ## Salinity ### Bar Press Unit [inHg, mmHg, bar, kPa, atm] ## Man Bar Press ## Sensor SST Sensor SSS Sensor Zero Limit Dual Range Cal [Disable, Enable] ####

FIGURE 6-2. Menu Tree (HART) - continued
pH # pH Value pH Comp [Auto, Manual] Manual pH Preamp loc [Sensor, Xmtr] Autocal [Manual, Standard, DIN 19267, Ingold, Merck] pH Slope pH SST pH SSS pH Zero Offset Limit pH Diagnostics **Diagnostics** [Off, On] GFH GFL Imped Comp [Off, On] **Temperature** Temp Comp [Auto, Manual] Man. Temp Temp unit [°C, °F] Temp Snsr Signal condition LRV URV **AO Damp** % rnge Xfer fnctn AO lo end point AO hi end pt Output condition Analog output AO AO Alrm typ Fixed Fault Loop test D/A trim HART output PV is Oxygen * SV is Temp ** TV is Snsr Cur *** 4V is pH **** Poll addr Burst option [PV, %range/current, Process vars/crnt] Burst mode [Off, On] Num req preams Num resp preams

FIGURE 6-2. Menu Tree (HART) - continued

	Device information					
	Distributor					
	Model					
	Dev id					
	Тад					
	Date					
	Write protect					
	Sher text					
	Descriptor					
	Mossago					
	Nessaye Revision #'o					
	Revision # 5					
	Fid dev rev					
	Software rev					
	Hardware rev					
	Local Display					
	AO LOI Units [mA, %]					
	Xmtr ID					
	Noise rejection					
	Load Default Conf.					
Re	view					
	Sensors					
	Outputs					
	Device information					
PV						
PV A	0					
PV LI	RV					
PV U	RV					
Notes	5:					
*	Can be Oxygen, Free CI, Ozone, Ttl CI, or Chirmn					
**	Can be *, Temp, pH, GI					
***	Can be *. Snsr Cur. Temp. pH. Gl					
****	Can be * Snsr Cur Temp, pH, GI Temp Res Not Used					
*****	Unite for Ozono can be nom or nob. For any of the chlorings, unit is					
	onits for Ozone can be ppin or ppb. For any or the chlorines, unit is					
	always ppm.					
#	Valid when PV = Free Cl					
##	Valid when PV = Oxygen					
###	$\frac{1}{1}$					
 #####	#### Valid when DV = Erec CI T(CL or Chirms)					
~~~	vanu when F v = Free O, Fu O, O OIIIIIIII					
#####	valio wnen Dual Range Cal = Enable					

FIGURE 6-2. Menu Tree (HART) - continued

SECTION 7.0 PROGRAMMING

- 7.1 General
- 7.2 Default Settings
- 7.3 Output Ranging
- 7.4 Temperature Settings
- 7.5 Display
- 7.6 Factory Default
- 7.7 **HART**
- 7.8 Calibration Setup
- 7.9 Line Frequency
- 7.10 pH Measurement
- 7.11 Barometric Pressure

7.1 GENERAL

This section describes how to do the following:

- 1. assign values to the 4 and 20 mA outputs
- 2. set the current generated by the transmitter during hold
- 3. set the current generated by the transmitter when a fault is detected
- 4. change sensor diagnostic limits
- 5. enable and disable automatic temperature correction
- 6. program the type measurement (oxygen, ozone, or chlorine)
- 7. setup stabilization criteria for calibration
- 8. enable automatic pH correction for chlorine measurements
- 9. choose units for barometric pressure (oxygen only)
- 10. choose limits for diagnostic fault messages

7.2 DEFAULT SETTINGS

Table 7-1 lists the default settings for the 5081-A transmitter. The transmitter is configured at the factory to measure oxygen.

IMPORTANT

Before changing any default settings, configure the transmitter for the measurement you want to make: oxygen, free chlorine, total chlorine, or ozone. Changing the measurement ALWAYS returns the transmitter to factory default settings.

TABLE 7-1. Default Settings

ш	EM	MNEMONIC	CHOICES	DEFAULT
Α.	Outputs	OutPut		
1.	4 mA setting	4MA		
	if oxygen (ppm)		-9999 to 9999 ppm	00.00 ppm
	if oxygen (ppb)		-9999 to 9999 ppb	000.0 ppb
	if oxygen (% saturation)		-9999 to 9999 %	00.00 ppm
	if chlorine or ozone		-9999 to 9999 ppm	00.00 ppm
2.	20 mA setting	20MA		
	if oxygen (ppm)		-9999 to 9999 ppm	10.00 ppm
	if oxygen (ppb)		-9999 to 9999 ppb	100.0 ppb
	if oxygen (% saturation)		-9999 to 9999 %	200%
	if chlorine or ozone		-9999 to 9999 ppm	10.00 ppm
3.	Hold	HOLd	3.80 to 22.00 mA	21.00 mA
4.	Fault	FAULt	3.80 to 22.00 mA	22.00 mA
5.	Dampen	dPn	0 to 255 seconds	0 seconds
6.	lest current	tESt	3.80 to 22.00 mA	0.00 mA
В.	Temperature compensation	tEMP		
1.	Automatic	tAUtO	On or Off	On
2.	Manual	tMAn	-25.0 to 150°C	25°C
C.	Display	dISPLAY		
1.	Type of measurement	tYPE	Oxygen, ozone, free chlorine, total chlorine	oxygen
2.	Units (oxygen only)	Unit	ppm, ppb, or %	ppm
3.	Units (ozone only)	Unit	ppm or ppb	ppm
4.	Sensor (oxygen only)	SEnSor	499ADO, 499ATrDO, Hx438 or Gx338, other biopharm	499ADO
5.	Iemperature units	tEMP	°C or °F	°C
6.	Output current units	OutPut	mA or % of full scale	mA
1.	Security code	CodE	000 to 999	000
D.	Calibration Setup	CAL SETUP		
11.		SIADILISE	00 to 00 coo	10 000
	a. ume		00 to 99 sec	TU Sec
	if oxygon (npm or pph)	UELIA	0.01 to 0.00 ppm	0.05 ppm
	if oxygen (%)		1 to 100 %	0.05 ppm 1 %
	if ozone		0.01 to 9.09 ppm	0.01 nnm
	if chlorine		0.01 to 9.99 ppm	0.01 ppm
2	Salinity (oxygen only)	SAI nfY	0.0 to 36.0	0.00 ppm
3	Slope (chlorine only)	SLOPE	single or dual	single
4	Maximum zero limit	LiMit		Single
	a. if oxygen (ppm)		00.00 to 10.00 ppm	0.05 ppm
	b. if oxygen (ppb)		000.0 to 999.9 bb	2.0 ppb
	c. if oxygen (%)		000.0 to 999.9 %	1%
	d. if ozone		00.00 to 10.00 ppm	0.01 ppm
	e. if chlorine		00.00 to 10.00 ppm	0.05 ppm
E.	Line Frequency	LinE FrEq	50 or 60 Hz	60 Hz
F.	HART	HArt		
1.	Address	AddrESS	00 to 15	00
2.	Preamble	PrEAMb	05 to 20	05
3.	Burst	bUrSt	on or off	off
4.	ID	ld	0000000 to 9999999	0000000
G.	pH Settings (free chlorine only)			
11.	Automatic pH correction	рн	on or off	on
2.	Ivianual pH correction	MAN	U.UU TO 14.UU	7.00 transmitter
J. ⊿			transmitter or sensor	transmitter
4.		ulaynustic		

	a. reference offset	rOFFSEt	0 to 999	60
	b. diagnostics	diAG	on or off	off
	(1) glass impedance temperature	IMPtC	on or off	on
	correction			
	(2) glass impedance high	GFH	0 to 2000 MΩ	1000 MΩ
	(3) glass impedance low	GFL	0 to 900 MΩ	10 MΩ
5.	Calibration settings	PH CAL		
	 automatic buffer calibration 	bAUtO	on or off	
	 buffer selection list 	buFFEr	see table in Section 13.1	standard
	 stabilization criteria 	StAbiLiSE		
	(1) time	tiME	0 to 99 sec	10 sec
	(2) change	dELtA	0.02 to 0.50	0.02
н.	Pressure settings (oxygen only)	BAr PrESS		
	a. units	Unit	mm hg, kPa, atm, bar, in Hg	mm Hg
	 b. pressure for % sat calculations 	% SAt P	0 to 9999	760 mm Hg

TABLE 7-1. Default Settings (continued)

7.3 OUTPUT RANGING

7.3.1 Purpose

This section describes how to do the following:

- 1. assign values to the 4 and 20 mA outputs
- 2. set the output current generated during hold
- 3. set the output current generated when a fault is detected
- 4. control the amount of dampening on the output signal
- 5. generate a test current.

7.3.2 Definitions

- 1. CURRENT OUTPUTS. The transmitter provides a continuous 4 20 mA output directly proportional to the concentration of the analyte. The analyte is the substance being determined (oxygen, chlorine, or ozone).
- 2. HOLD. During calibration and maintenance the transmitter output may be outside the normal operating range. Placing the transmitter on hold prevents false alarms or the unwanted operation of chemical dosing pumps. The transmitter output can be programmed to remain at the last value or to generate any current between 3.80 and 22.00 mA. During hold, the transmitter displays the present concentration and temperature. The word HOLD appears in the display.
- 3. FAULT. A fault is a system disabling condition. When the transmitter detects a fault, the following happens:
 - a. The display flashes.
 - b. The words FAULT and HOLD appear in the main display.
 - c. A fault or diagnostic message appears in the display.
 - d. The output signal remains at the present value or goes to the programmed fault value. Permitted values are between 3.80 and 22.00 mA.
 - e. If the transmitter is in HOLD when the fault occurs, the output remains at the programmed hold value. To alert the user that a fault exists, the word FAULT appears in the main display, and the display flashes. A fault or diagnostic message also appears.
 - f. If the transmitter is simulating an output current when the fault occurs, the transmitter continues to generate the simulated current. To alert the user that a fault exists, the word FAULT appears in the display, and the display flashes.
- 4. DAMPEN. Output dampening smooths out noisy readings. But it also increases the response time of the output. To estimate the time (in minutes) required for the output to reach 95% of the final reading following a step change, divide the setting by 20. Thus, a setting of 140 means that, following a step change, the output takes about seven minutes to reach 95% of final reading. The output dampen setting does not affect the response time of the process display. The maximum setting is 255.
- 5. TEST. The transmitter can be programmed to generate a test current.

7.3.3 Procedure

Press PROG on the remote controller. The **OutPut** submenu appears.

Press ENTER. The screen displays the 4 MA prompt. Use the arrow keys to change the setting. Press ENTER to save.

3. The screen displays the 20 MA prompt. Use the arrow keys to change the setting. Press ENTER to save.

The screen displays the **HoLd** prompt. Use the arrow keys to change the setting to the output desired when the transmitter is in hold. The range is 3.80 to 22.00 mA. Entering 00.00 causes the transmitter to hold the output at the value it was when placed in hold. The hold setting overrides the fault setting. Press ENTER to save.

The screen displays the FAULt prompt. Use the arrow keys to change the setting to the output desired when the transmitter detects a fault. The range is 3.80 to 22.00 mA. Entering 00.00 causes the transmitter to hold the output at the value it was when the fault occurred. Press ENTER to save.

6. The screen displays the dPn prompt. Use the arrow keys to change the setting. The range is 0 to 255. Press ENTER to save.

7. The screen displays the **tESt** prompt. Use the arrow keys to enter the desired test current. Press ENTER to start the test. Press EXIT to end the test.

8. Press RESET to return to the process display.

7.4 TEMPERATURE SETTINGS

7.4.1 Purpose

This section describes how to do the following:

- 1. Enable and disable automatic temperature compensation
- 2. Set a manual temperature compensation value for oxygen, chlorine, ozone, and pH measurements
- 3. Tell the transmitter the type of temperature element in the sensor

7.4.2 Definitions

- 1. AUTOMATIC TEMPERATURE COMPENSATION OXYGEN, CHLORINE, AND OZONE. The oxygen, chlorine, and ozone sensors used with the 5081-A transmitter are membrane-covered amperometric sensors. The permeability of the membrane, or the ease with which the analyte passes through the membrane, is a function of temperature. As temperature increases, permeability increases, and the analyte diffuses more readily through the membrane. Because sensor current depends on diffusion rate, a temperature increase will cause the sensor current and transmitter reading to increase even though the concentration of analyte remained constant. A correction equation in the software automatically corrects for changes in membrane permeability caused by temperature. Temperature is also used in the pH correction applied to free chlorine readings and in automatic air calibration of oxygen sensors. In automatic temperature correction, the transmitter uses the temperature measured by the sensor for all calculations in which temperature is used.
- 2. MANUAL TEMPERATURE COMPENSATION OXYGEN, CHLORINE, AND OZONE. In manual temperature compensation, the transmitter uses the temperature entered by the user for membrane permeability and pH corrections and for air calibration calculations. It does not use the actual process temperature. Do **NOT** use manual temperature correction unless the measurement and calibration temperatures differ by no more than about 2°C. Manual temperature correction is useful if the sensor temperature element has failed and a replacement sensor is not available.
- 3. AUTOMATIC TEMPERATURE COMPENSATION pH. The transmitter uses a temperature-dependent factor to convert measured cell voltage to pH. In automatic temperature compensation the transmitter measures the temperature and automatically calculates the correct conversion factor. Temperature is also used in automatic buffer calibration. For maximum accuracy, use automatic temperature correction.
- 4. MANUAL TEMPERATURE COMPENSATION pH. In manual temperature compensation, the transmitter converts measured voltage to pH using the temperature entered by the user. It does not use the actual process temperature. Do NOT use manual temperature compensation unless the process temperature varies no more than about 2°C or the pH is between 6 and 8. Manual temperature compensation is useful if the sensor temperature element has failed and a replacement sensor is not available.

7.4.3 Procedure

- 1. Press PROG on the remote controller.
 - . Press NEXT until the **tEMP** submenu appears. Press ENTER.
- 3. The screen displays the **tAUtO** (automatic temperature compensation) prompt. Press **6** or **6** to toggle between **On** and **OFF**. Press ENTER to save.
 - If you disable tAuto, the **tMAN** prompt appears. Use the arrow keys to change the temperature to the desired value. To enter a negative number, press **O** Or **O** until no digit is flashing. Then press **O** or **O** to display the negative sign. The temperature entered in this step will be used in all measurements (oxygen, chlorine, ozone, or pH), no matter what the process temperature is. Press ENTER to save.
- 5. Press RESET to return to the process display.

7.5 DISPLAY

7.5.1 Purpose

This section describes how to do the following:

- 1. Configure the transmitter to measure oxygen, free chlorine, total chlorine, or ozone
- 2. Choose concentration units
- 3. Set the temperature units to °C or °F
- 4. Set the output to current or percent of full scale
- 5. Enter a security code.

7.5.2 Definitions

- 1. MEASUREMENT. The transmitter can be configured to measure dissolved oxygen (ppm and ppb level), free chlorine, total chlorine, or ozone.
- FREE CHLORINE. Free chlorine is the product of adding sodium hypochlorite (bleach), calcium hypochlorite (bleaching powder), or chlorine gas to fresh water. Free chlorine is the sum of hypochlorous acid (HOCI) and hypochlorite ion (OCI⁻)
- 3. TOTAL CHLORINE. Total chlorine is the sum of free and combined chlorine. Combined chlorine generally refers to chlorine oxidants in which chlorine is combined with ammonia or organic amines. Monochloramine, used to disinfect drinking water, is an example of combined chlorine. The term total chlorine also refers to other chlorine oxidants such as chlorine dioxide. To measure total chlorine, the sample must first be treated with a mixture of acetic acid and potassium iodide. Total chlorine reacts with iodide to produce an equivalent amount of iodine, which the sensor measures.
- 4. OUTPUT CURRENT. The transmitter generates a 4-20 mA output signal directly proportional to the concentration of oxygen, chlorine, or ozone in the sample. The output signal can be displayed as current (in mA) or as percent of full scale.
- 5. SECURITY CODE. The security code unlocks the transmitter and allows access to all menus.

7.5.3 Procedure

PROGRAM					
dISPLAY	1. Press	Press PROG on the remote controller.			
EXIT NEXT ENTER	2. Press	Press NEXT until the diSPLAy submenu appears. Press ENTER.			
PROGRAM 3. Press 9 or 9 to display the desired measurement. Press ENTER to say					
tYPE 02	02	Dissolved oxygen (go to step 4)			
EXIT ENTER	CLrA	Monochloramine			
	tCL	Total chlorine			
	FCL	Free chlorine			
	03	Ozone (go to step 7)			

Although monochloramine is a choice, a monochloramine sensor is **NOT** currently available from Rosemount Analytical.

- I. If you chose O2 in step 3, the screen at left appears. Press
 o or
 to display the desired units: ppm, ppb, or %. Press ENTER to save. Also, refer to step 6 for recommended settings to make for different types of sensors.
- 5. The screen at left appears. Press € or ₅ to display the type of sensor. Press ENTER to save.

AdO	499ADO
trdO	499ATrDO
SdO1	Hx438 or Gx448 steam-sterilizable sensor
SdO2	Steam-sterilizable sensor from other manufacturer

Refer to step 6 for recommended sensor/unit combinations.

6. For best results make the following settings based on the sensor being used.

Sensor	Units
499ADO	ppm or %
499ATrDO	ppb
Gx448	ppm or %
Hx438	ppm or %

7. If you chose **O3** in step 3, the screen at left appears. Press **6** or **6** to toggle between **ppm** and **ppb**. Press ENTER to save.

8. Press RESET to return to the main display.

PROGRAM Unit PPD EXIT ENTER

7.6 FACTORY DEFAULT

7.6.1 Purpose

This section describes how to erase ALL user-defined configuration settings and return the transmitter to factory default settings.

7.6.2 Procedure

7.7 HART

For more information, see Section 6.3.2.

7.8 CALIBRATION SETUP

7.8.1 Purpose

This section describes how to do the following:

- 1. Enter stabilization criteria for calibration
- 2. Enter an upper limit for sensor zero
- Enter a salinity value for air calibration of dissolved oxygen sensors 3
- 4 Enable dual slope calibration for free and total chlorine sensors.

1

7.8.2 Definitions

- STABILIZATION CRITERION. The transmitter can be programmed not to accept calibration data until the reading has 1 remained within a specified concentration range for a specified period of time. For example, a stability criterion of 0.05 ppm for 10 seconds means that calibration data will not be accepted until the reading changes less than 0.05 ppm over a 10-second period. The transmitter calculates the concentration using the present calibration data, or in the case of a first time calibration, the default sensitivity.
- SENSOR ZERO LIMIT. Even in the complete absence of the substance being determined, all amperometric sensors 2. generate a small current called the zero or residual current. The transmitter compensates for the residual current by subtracting it from the measured current before converting the result to a concentration value. The zero current varies from sensor to sensor. The transmitter can be programmed not to accept a zero current until the value has fallen below a reasonable limit.
- 3. SALINITY (DISSOLVED OXYGEN ONLY). The solubility of oxygen in water depends on the concentration of dissolved salts in the water. Increasing the concentration decreases the solubility. If the salt concentration is greater than about 1000 ppm, the accuracy of the measurement can be improved by applying a salinity correction. Enter the salinity as parts per thousand (‰). One percent is ten part per thousand.
- DUAL SLOPE CALIBRATION (FREE AND TOTAL CHLORINE ONLY). Free and total chlorine sensors from 4. Rosemount Analytical (Model 499ACL-01 and 499ACL-02) become non-linear at high concentrations of chlorine. Dual slope calibration allows the analyzer to correct for the non-linearity of the sensor. For more information see Section 10.4 or 11.4.

7.8.3 Procedure

Procedure continued on following page.

PROGRAM	← 6.	Set the stabilization range to between 0.01 and 9.99 ppm. The default values are			
delta 0.05		snown in the table	. Press ENTER to save.		
EXIT ENTER		Oxygen 0.	05 ppm or 1%		
		Free chlorine 0.	05 ppm		
		Total chlorine 0.	05 ppm		
		Ozone 0.	01 ppm		
PROGRAM	← 7.	The display returns	s to the StABiLiSE prompt. Press NEXT. The next screen depends		
Stabilise		on the measureme	ent being made. For free or total chlorine see step 8. For oxygen		
EXIT NEXT ENTER		see step 9. For oz	one see step 10.		
PROGRAM	حــــــــــــــــــــــــــــــــــــ	If the measuremen	It is free or total chlorine, the SLOPE prompt appears. Use ☯ or ϗ		
slope Sngl		to toggle between	SnGL (single) or duAL (dual) slope. Press ENTER. Go to step 10		
EXIT ENTER					
,			NOTE		
		For the vast ma able, Dual slop	ajority of applications, single slope calibration is accept-		
PROGRAM	◄ 9.	If the measuremer	nt is oxygen, the SALnty (salinity) prompt appears. Use the arrow		
salnty no		keys to enter the s	alinity of the water. Press ENTER. Go to step 10.		
EXIT ENTER					
	10) The diaplay returns	to the SDAn CAL server Dress NEVT		
cnon Col			S to the SPAN CAL Screen. Fless NEXT.		
EXII NEXI ENTER					
PROGRAM	← 11	. The 0 CAL screen	appears. Press ENTER.		
0 Cal					
EXIT NEXT ENTER					
PROGRAM	◄ 12	2. Enter the desired z	zero limit. The units are the same as the units programmed in Sec-		
limit 00.00		tion 7.5. Default lin	nits are given in the table.		
EXIT ENTER		Oxygen (ppm)	0.05 ppm		
		Oxygen (ppb)	2.0 ppb		
		Oxygen (% satura	ation) 1%		
		Free chlorine	0.05 ppm		
		Total chlorine	0.05 ppm		

13. Press RESET to return to the main display.

Ozone

0.01 ppm or 10 ppb

7.9 LINE FREQUENCY

7.9.1 Purpose

This section describes how to maximize noise rejection by entering the frequency of the mains power into the transmitter.

7.9.2 Procedure

1. Press PROG on the remote controller.

7.10 pH MEASUREMENT

NOTE

The pH measurement submenu appears only if the transmitter has been configured to measure free chlorine. pH is not available with any other meassurement.

7.10.1 Purpose

This section describes how to do the following:

- 1. Enable and disable automatic pH correction for free chlorine measurements
- 2. Set a pH value for manual pH correction
- 3. Enable and disable pH sensor diagnostics
- 4. Set upper and lower limits for glass impedance diagnostics
- 5. Enable and disable automatic pH calibration
- 6. Set stability criteria for automatic pH buffer calibration.

7.10.2 Definitions

- 1. AUTOMATIC pH CORRECTION. Free chlorine is the sum of hypochlorous acid (HOCI) and hypochlorite ion (OCI⁻). The relative amount of each depends on pH. As pH increases, the concentration of HOCI decreases and the concentration of OCI⁻ increases. Because the sensor responds only to HOCI, a pH correction is necessary to properly convert the sensor current into a free chlorine reading. The transmitter uses both automatic and manual pH correction. In automatic pH correction the transmitter continuously monitors the pH of the sample and corrects the free chlorine reading for changes in pH. In manual pH correction, the user enters the pH of the sample. Generally, if the pH changes more than about 0.2 units over short periods of time, automatic pH correction is best. If the pH is relatively steady or subject only to seasonal changes, manual pH correction is adequate.
- REFERENCE OFFSET. The transmitter reading can be changed to match the reading of a second pH meter. If the difference (converted to millivolts) between the transmitter reading and the desired value exceeds the programmed limit, the transmitter will not accept the new reading. To estimate the millivolt difference, multiply the pH difference by 60.
- pH SENSOR DIAGNOSTICS. The transmitter continuously monitors the pH sensor for faults. A fault means that the sensor has failed or is possibly nearing failure. The only pH sensor diagnostic available in the 5081-A is glass impedance.
- 4. GLASS IMPEDANCE. The transmitter monitors the condition of the pH-sensitive glass membrane in the sensor by continuously measuring the impedance across the membrane. Typical impedance is 100 to 500 MΩ. A low impedance (<10 MΩ) means the glass membrane has cracked and the sensor must be replaced. An extremely high impedance (>1000MΩ) implies that the sensor is aging and may soon need replacement. High impedance might also mean that the glass membrane is no longer immersed in the process liquid.
- 5. AUTOMATIC pH CALIBRATION. The transmitter features both automatic and manual pH calibration. In automatic calibration, screen prompts direct the user through a two-point buffer calibration. The transmitter recognizes the buffers and uses temperature-corrected values in the calibration. The table in Section 13.1 lists the standard buffers the transmitter recognizes. The transmitter also recognizes several technical buffers: Merck, Ingold, and DIN 19267. During automatic calibration, the transmitter does not accept data until programmed stability limits have been met.
- 6. MANUAL pH CALIBRATION. If automatic pH calibration is deactivated, the user must perform a manual calibration. In manual calibration the user judges when readings are stable and manually enters the buffer values. Because manual calibration greatly increases the chance of making an error, the use of automatic calibration is strongly recommended.

7.11 BAROMETRIC PRESSURE

NOTE

The barometric pressure submenu appears only if the transmitter has been configured to measure oxygen.

7.11.1 Purpose

This section describes how to do the following

- 1. Set the units for barometric pressure
- 2. Enter a pressure other than the calibration pressure for percent saturation measurements.

7.11.2 Definitions

- BAROMETRIC PRESSURE. Because the current generated by an amperometric oxygen sensor is directly proportional to the partial pressure of oxygen, the sensor is generally calibrated by exposing it to water saturated air. See Section 9.1 for more information. To calculate the equivalent concentration of oxygen in water in ppm, the transmitter must know the temperature and barometric pressure. This submenu lets the user specify the units for barometric pressure.
- 2. PERCENT SATURATION PRESSURE. Oxygen is sometimes measured in units of percent saturation. Percent saturation is the concentration of oxygen divided by the maximum amount of oxygen the water can hold (the saturation concentration) at the temperature and pressure of the measurement. Generally, the pressure during the measurement is assumed to be the same as the pressure when the sensor was calibrated. If the measurement and calibration pressures differ, the measurement pressure can be entered as a separate variable.

7.11.3 Procedure

SECTION 8.0 CALIBRATION — TEMPERATURE

8.1 INTRODUCTION

All four amperometric sensors (oxygen, ozone, free chlorine, and total chlorine) are membrane-covered sensors. As the sensor operates, the analyte (the substance to be determined) diffuses through the membrane and is consumed at an electrode immediately behind the membrane. The reaction produces a current that depends on the rate at which the analyte diffuses through the membrane. The diffusion rate, in turn, depends on the concentration of the analyte and how easily it passes through the membrane (the membrane permeability). Because the membrane permeability is a function of temperature, the sensor current will change if the temperature changes. To correct for changes in sensor current caused by temperature, the transmitter automatically applies a membrane permeability correction. Although the membrane permeability is different for each sensor, the change is about 3%/°C at 25°C, so a 1°C error in temperature produces about a 3% error in the reading.

Temperature plays an additional role in oxygen measurements. Oxygen sensors are calibrated by exposing them to water-saturated air, which, from the point of view of the sensor, is equivalent to water saturated with atmospheric oxygen (see Section 9.1 for more information). During calibration, the transmitter calculates the solubility of atmospheric oxygen in water using the following steps. First, the transmitter measures the temperature. From the temperature, the transmitter calculates the vapor pressure of water and, using the barometric pressure, calculates the partial pressure of atmospheric oxygen. Once the transmitter knows the partial pressure, it calculates the equilibrium solubility of oxygen in water using a temperature-dependent factor called the Bunsen coefficient. Overall, a 1°C error in the temperature measurement produces about a 2% error in the solubility calculated during calibration and about the same error in subsequent measurements.

Temperature is also important in the pH measurement required to correct free chlorine readings.

- 1. The transmitter uses a temperature dependent factor to convert measured cell voltage to pH. Normally, a slight inaccuracy in the temperature reading is unimportant unless the pH reading is significantly different from 7.00. Even then, the error is small. For example, at pH 12 and 25°C, a 1°C error produces a pH error less than ±0.02.
- During auto calibration, the transmitter recognizes the buffer being used and calculates the actual pH of the buffer at the measured temperature. Because the pH of most buffers changes only slightly with temperature, reasonable errors in temperature do not produce large errors in the buffer pH. For example, a 1°C error causes at most an error of ±0.03 in the calculated buffer pH.

Without calibration the accuracy of the temperature measurement is about ±0.4°C. Calibrate the transmitter if

- 1. ±0.4°C accuracy is not acceptable
- 2. the temperature measurement is suspected of being in error. Calibrate temperature by making the transmitter reading match the temperature measured with a standard thermometer.

8.2. PROCEDURE

1. Place the sensor and a calibrated reference thermometer in a container of water at ambient temperature. Be sure the temperature element in the sensor is completely submerged by keeping the sensor tip at least three inches below the water level. Stir continuously. Allow at least 20 minutes for the standard thermometer, sensor, and water to reach constant temperature.

CALIBR	ATE		
tEMP /	AdJ		
EXIT	NEXT	ENTER	•
CALIBR	ATE		•
tEMP	0	25.0	
EXIT		ENTER	

- 2. Press CAL on the remote controller.
- 3. Press NEXT until the **tEMP AdJ** submenu appears. Press Enter.
 - 4. The **tEMP** prompt appears. Use the arrow keys to change the display to match the temperature measured using the standard thermometer. Press ENTER to save.
 - 5. The **tEMP AdJ** sub-menu appears. Press RESET to return to the main display.

SECTION 9.0 CALIBRATION — OXYGEN

9.1 INTRODUCTION

As Figure 9-1 shows, oxygen sensors generate a current directly proportional to the concentration of dissolved oxygen in the sample. Calibrating the sensor requires exposing it to a solution containing no oxygen (zero standard) and to a solution containing a known amount of oxygen (full-scale standard).

The zero standard is necessary because oxygen sensors, even when no oxygen is present in the sample, generate a small current called the residual current. The analyzer compensates for the residual current by subtracting it from the measured current before converting the result to a dissolved oxygen value. New sensors require zeroing before being placed in service, and sensors should be zeroed whenever the electrolyte solution is replaced. The recommended zero standard is 5% sodium sulfite in water, although oxygen-free nitrogen can also be used.

The Model 499A TrDO sensor, used for the determination of trace (ppb) oxygen levels, has very low residual current and does not normally require zeroing. The residual current in the 499A TrDO sensor is equivalent to less than 0.5 ppb oxygen.

The purpose of the full-scale standard is to establish the slope of the calibration curve. Because the solubility of atmospheric oxygen in water as a function of temperature and barometric pressure is well known, the natural choice for a full-scale standard is air-saturated water. However, air-saturated water is difficult to prepare and use, so the universal practice is to use air for calibration. From the point of view of the oxygen sensor, air and air-saturated water are identical. The equivalence comes about because the sensor really measures the chemical potential of oxygen. Chemical potential is the force that causes oxygen molecules to diffuse from the sample into the sensor where they can be measured. It is also the force that causes oxygen. Once the water is saturated, the chemical potential of oxygen in the two phases (air and water) is the same.

Oxygen sensors generate a current directly proportional to the rate at which oxygen molecules diffuse through a membrane stretched over the end of the sensor. The diffusion rate depends on the difference in chemical potential between oxygen in the sensor and oxygen in the sample. An electrochemical reaction, which destroys any oxygen molecules entering the sensor, keeps the concentration (and the chemical potential) of oxygen inside the sensor equal to zero. Therefore, the chemical potential of oxygen in the sample alone determines the diffusion rate and the sensor current.

When the sensor is calibrated, the chemical potential of oxygen in the standard determines the sensor current. Whether the sensor is calibrated in air or air-saturated water is immaterial. The chemical potential of oxygen is the same in either phase. Normally, to make the calculation of solubility in common units (like ppm DO) simpler, it is convenient to use water-saturated air for calibration.

Automatic air calibration is standard. The user simply exposes the sensor to water-saturated air and keys in the barometric pressure. The transmitter monitors the sensor current. When the current is stable, the transmitter stores the current and measures the temperature. From the temperature, the transmitter calculates the saturation vapor pressure of water. Next, it calculates the pressure of dry air by subtracting the vapor pressure from the baromet-

ric pressure. Using the fact that dry air always contains 20.95% oxygen, the transmitter calculates the partial pressure of oxygen. Once the transmitter knows the partial pressure of oxygen, it uses the Bunsen coefficient to calculate the equilibrium solubility of atmospheric oxygen in water at the prevailing temperature. At 25°C and 760 mm Hg, the equilibrium solubility is 8.24 ppm.

Often it is too difficult or messy to remove the sensor from the process liquid for calibration. In this case, the sensor can be calibrated against a measurement made with a portable laboratory instrument. The laboratory instrument typically uses a membrane-covered amperometric sensor that has been calibrated against water-saturated air.

9.2 PROCEDURE - ZEROING THE SENSOR

 Place the sensor in a **fresh** solution of 5% sodium sulfite (Na₂SO₃) in water. Be sure air bubbles are not trapped against the membrane. The current will drop rapidly at first and then gradually reach a stable zero value. To monitor the sensor current, go to the main display. Press DIAG followed by NEXT. The **SenSor Cur** prompt appears. Press ENTER to view the sensor current. Note the units: nA is nanoamps; μA is microamps. The table gives typical zero values for Rosemount Analytical sensors.

Sensor	Zero Current
499ADO	<50 nA
499ATrDO	<5 nA
Hx438 and Gx448	<1 nA

499ATrDO sensors usually do not require zeroing. However, the zero current of a new sensor should ALWAYS be checked.

A new sensor or a sensor in which the electrolyte solution has been replaced may require several hours (occasionally as long as overnight) to reach a minimum current. DO NOT START THE ZERO ROUTINE UNTIL THE SENSOR HAS BEEN IN ZERO SOLUTION FOR AT LEAST TWO HOURS.

2. Press CAL on the remote controller. CALIBRATE 3. The SEnSor O prompt appears. Press ENTER. sensor 0 EXIT NEXT ENTER The screen shows the value (in units selected in Section 7.5.3) below CALIBRATE which the reading must be before the zero current will be accepted. 0 at 0.05 Assume the units are ppm. The screen shows 0.02. Therefore, the read-EXIT ENTER ing must be below 0.02 ppm before the zero will be accepted. For a 499ADO sensor 0.02 ppm corresponds to about 50 nA. To change the zero limit value, see Section 7.8.3. Press ENTER. NOTE The number shown in the main display may change. During the zero step, the previous zero current is suppressed, and the concentration shown in the main display is calculated assuming the residual current is zero. Once the transmitter accepts the new zero current, it is used in all subsequent measurements. CALIBRATE 5. The tiME dELAy message appears and remains until the zero current is below the concentration limit shown in the previous screen. If the current time delay is already below the limit, tiME dELAy will not appear. To bypass the EXIT ENTER time delay, press ENTER. CALIBRATE O donE shows that the zero step is complete. Press EXIT. 6. 0 done EXIT 7. Press RESET to return to the main display.

9.3 PROCEDURE — AIR CALIBRATION

- 1. Remove the sensor from the process liquid. Use a soft tissue and a stream of water from a wash bottle to clean the membrane. Blot dry. The membrane must be dry during air calibration.
- 2. Pour some water into a beaker and suspend the sensor with the membrane about 0.5 inch (1 cm) above the water surface. To avoid drift caused by temperature changes, keep the sensor out of the direct sun.
- 3. Monitor the dissolved oxygen reading and the temperature. Once readings have stopped drifting, begin the calibration. It may take 10 -15 minutes for the sensor reading in air to stabilize. Stabilization time may be even longer if the process temperature is appreciably different from the air temperature. For an accurate calibration, temperature measured by the sensor must be stable.
- 4. Press CAL on the remote controller. CALIBRATE Sensor Cal Press NEXT. The SEnSor CAL submenu appears. Press ENTER. 5. NEXT ENTER EXIT CALIBRATE 6. The Air CAL prompt appears. Press ENTER. Air Cal EXIT NEXT ENTER CALIBRATE 7. The screen shows the units selected for barometric pressure. Press nnHG NEXT. EXIT NEXT CALIBRATE Use the arrow keys to enter the barometric pressure. Press ENTER. 8. 760.0 Press NOTE EXIT ENTER Be sure to enter the actual barometric pressure. Weather forecasters and airports usually report barometric pressure corrected to sea level; they do not report the actual barometric pressure. To estimate barometric pressure from altitude, see Appendix A. CALIBRATE 9. The tiME dELAy message appears and remains until the sensor readtime del av ing meets the stability criteria set in Section 7.8. To bypass the time EXIT ENTER delay, press ENTER. CALIBRATE 10. This screen appears when the calibration is complete. The concentration Cal dOne shown in the main display is the solubility of atmospheric oxygen in EXIT water at ambient temperature and barometric pressure. Press EXIT. 11. To return to the main display, press RESET.
 - 12. During calibration, the transmitter calculates the sensitivity (nA/ppm) of the sensor. To check the sensitivity, go to the main display. Press DIAG. Press NEXT until the **SenSitvtY** (sensitivity) prompt appears. Press ENTER to display the sensitivity in nA/ppm. Typical values at 25°C are given in the table.

Sensor	nA/ppm
499ADO	1,800 - 3,100
499ATrDO	3,600 - 6,100
Hx438 and Gx448	4.8 - 9.8

9.4 PROCEDURE — IN-PROCESS CALIBRATION

- 1. The transmitter and sensor can be calibrated against a standard instrument. For oxygen sensors installed in aeration basins in waste treatment plants, calibration against a second instrument is often preferred. For an accurate calibration be sure that:
 - a. The standard instrument has been zeroed and calibrated against water-saturated air following the manufacturer's instructions.
 - b. The standard sensor is inserted in the liquid as close to the process sensor as possible.
 - c. Adequate time is allowed for the standard sensor to stabilize before calibrating the process instrument.

calibrate Sensor Cal exit next enter	<	3.	Press NEXT. The SEnSor CAL submenu appears. Press ENTER.
Calibrate Air Cal exit next enter	<	4.	Press NEXT. The Air CAL prompt appears. Press NEXT.
CALIBRATE h ProCess exit enter	<	5.	The In ProCESS prompt appears. Press ENTER.
CALIBRATE time del ay EXIT NEXT		6.	The tiME dELAy message appears and remains until the sensor read- ing meets the stability criteria set in Section 7.8. To bypass the time delay, press ENTER.
CALIBRATE Grab spl EXIT ENTER	◄	7.	The GrAb SPL (grab sample) message appears. Press ENTER.
CALIBRATE Cal 3.20 EXIT ENTER	<	8.	Use the arrow keys to change the flashing display to the value indicated by the standard instrument. Press ENTER to save.

2. Press CAL on the remote controller.

9. Press RESET to return to the main display.

SECTION 10.0 CALIBRATION — FREE CHLORINE

10.1 INTRODUCTION

As Figure 10-1 shows, a free chlorine sensor generates a current directly proportional to the concentration of free chlorine in the sample. Calibrating the sensor requires exposing it to a solution containing no chlorine (zero standard) and to a solution containing a known amount of chlorine (full-scale standard).

The zero standard is necessary because chlorine sensors, even when no chlorine is in the sample, generate a small current called the residual current. The transmitter compensates for the residual current by subtracting it from the measured current before converting the result to a chlorine value. New sensors require zeroing before being placed in service, and sensors should be zeroed whenever the electrolyte solution is replaced. Either of the following makes a good zero standard:

- Deionized water containing about 500 ppm sodium chloride. Dissolve 0.5 grams (1/8 teaspoonful) of table salt in 1 liter of water. DO NOT USE DEIONIZED WATER ALONE FOR ZEROING THE SENSOR. THE CONDUCTIVITY OF THE ZERO WATER MUST BE GREATER THAN 50 μ S/cm.
- Tap water known to contain no chlorine. Expose tap water to bright sunlight for at least 24 hours.

The purpose of the full-scale standard is to establish the slope of the calibration curve. Because stable chlorine standards do not exist, **the sensor must be calibrated against a test run on a grab sample of the process liq-uid.** Several manufacturers offer portable test kits for this purpose. Observe the following precautions when taking and testing the grab sample.

- Take the grab sample from a point as close to the sensor as possible. Be sure that taking the sample does not alter the flow of the sample to the sensor. It is best to install the sample tap just downstream from the sensor.
- Chlorine solutions are unstable. Run the test immediately after taking the sample. Try to calibrate the sensor when the chlorine concentration is at the upper end of the normal operating range.

Free chlorine measurements made with the 499ACL-01 sensor also require a pH correction. Free chlorine is the sum of hypochlorous acid (HOCI) and hyprochlorite ion (OCI⁻). The relative amount of each depends on the pH. As pH increases, the concentration of HOCI decreases and the concentration of OCI⁻ increases. Because the sensor responds only to HOCI, a pH correction is necessary to properly convert the sensor current into a free chlorine reading.

The transmitter uses both automatic and manual pH correction. In automatic pH correction, the transmitter continuously monitors the pH of the solution and corrects the free chlorine reading for changes in pH. In manual pH correction, the transmitter uses a fixed pH value entered by the user to make the correction. Generally, if the pH changes more than about 0.2 units over short periods of time, automatic pH correction is best. If the pH is relatively steady or subject only to seasonal changes, manual pH correction is adequate.

During calibration, the transmitter must know the pH of the sample. If the transmitter is using automatic pH correction, the pH sensor (properly calibrated) **must be in the process liquid before starting the calibration.** If the transmitter is using manual pH correction, be sure to enter the pH value before starting the calibration.

The Model 499ACL-01 free chlorine sensor loses sensitivity at high concentrations of chlorine. The 5081-A transmitter has a dual slope feature that allows the user to compensate for the non-linearity of the sensor. However, for the vast majority of applications, dual slope calibration is unnecessary.

10.2 PROCEDURE — ZEROING THE SENSOR

 Place the sensor in the zero standard (see Section 10.1). Be sure no air bubbles are trapped against the membrane. The sensor current will drop rapidly at first and then gradually reach a stable zero value. To monitor the sensor current, go to the main display. Press DIAG followed by NEXT. The **SEnSor Cur** prompt appears. Press ENTER to view the sensor current. Note the units: nA is nanoamps; µA is microamps. Typical zero current for a free chlorine sensor is -10 to +10 nanoamps.

A new sensor or a sensor in which the electrolyte solution has been replace may require several hours (occasionally as long as overnight) to reach a minimum zero current. DO NOT START THE ZERO ROUTINE UNTIL THE SENSOR HAS BEEN IN ZERO SOLUTION FOR AT LEAST TWO HOURS.

2. Press CAL on the remote controller.

CALIBRATE Sensor 0 EXIT NEXT ENTER	3.	The SEnSor O prompt appears. Press ENTER.
CALIBRATE 0 at 0.02 EXIT ENTER	4.	The screen shows the value (in units ppm) below which the reading must be before the zero current will be accepted. The screen shows 0.02 . Therefore, the reading must be below 0.02 ppm before the zero will be accepted. For a typical 499ACL-01 sensor, 0.02 ppm corresponds to about 7 nA. To change the zero limit value, see Section 7.8.3. Press ENTER.
		NOTE
		The number shown in the main display may change. During the zero step, the previous zero current is suppressed, and the concentration shown in the main display is calculated assuming the residual current is zero. Once the transmitter accepts the new zero current, it is used in all subsequent measurements.
CALIBRATE		
time del ay	5.	The tiME dELAY message appears and remains until the zero current is below the concentration limit shown in the previous screen. If the cur- rent is already below the limit, tiME dELAy will not appear. To bypass the time delay, press ENTER.
CALIBRATE		
0 dOne	6.	O donE shows that the zero step is complete. Press EXIT.
EXIT	7.	Press RESET to return to the main display.

10.3 PROCEDURE — FULL SCALE CALIBRATION

- 1. Place the sensor in the process liquid. If automatic pH correction is being used, calibrate the pH sensor (see Section 13.0) and place it in the process liquid. If manual pH correction is being used, measure the pH of the process liquid and enter the value (see Section 7.6). Adjust the sample flow until it is within the range recommended for the chlorine sensor. Refer to the sensor instruction sheet.
- 2. Adjust the chlorine concentration until it is near the upper end of the control range. Wait until the reading is stable before starting the calibration.

the sensor. To check the sensitivity, go to the main display. Press DIAG. Press NEXT until the **SenSitvtY** (sensitivity) prompt appears. Press ENTER to display the sensitivity in nA/ppm. The sensitivity of a 499ACL-01 sensor is 250 - 350 nA/ppm at 25°C and pH 7.

10.4 DUAL SLOPE CALIBRATION

Figure 10-2 show the principle of dual slope calibration. Between zero and concentration C1, the sensor response is linear. When the concentration of chlorine becomes greater than C1, the response is non-linear. In spite of the non-linearity, the response can be approximated by a straight line between point 1 and point 2.

Dual slope calibration is rarely needed. It is probably useful in fewer than 5% of applications.

- 1. Be sure the transmitter has been configured for dual slope calibration. See Section 7.8.
- 2. Zero the sensor. See Section 10.2.
- 3. Place the sensor in the process liquid. If automatic pH correction is being used, calibrate the pH sensor (Section 13.0) and place it in the process liquid. If manual pH correction is being used, measure the pH of the process liquid and enter the value. See Section 7.8. Adjust the sample flow until it is within the range recommended for the chlorine sensor. Refer to the sensor instruction sheet.

- 4. Press CAL on the remote controller. Press NEXT.
- CALIBRATE Sensor Cal 5. The **SEnSor CAL** prompt appears. Press ENTER. NEXT ENTER EXIT CALIBRATE The CAL Pt 1 prompt appears. Adjust the chlorine concentration until it 6. Cal pt1 is near the upper end of the linear range of the sensor. Press ENTER. EXIT NEXT ENTER CALIBRATE The tiME dELAy message appears and remains until the sensor read-7. time del ay ing meets the stability criteria set in Section 7.8. To bypass the time EXIT NEXT delay, press ENTER. NOTE As soon as the stability criteria are met (or ENTER is pressed to by-pass the time delay), the transmitter stores the sensor current. Therefore, if the chlorine level in the process liquid drifts while the sample is being tested, there is no need to compensate for the change when entering test results. CALIBRATE 8. The GrAb SPL (grab sample) prompt appears. Take a sample of the Grab spl process liquid and immediately determine the concentration of free ENTER EXIT chlorine in the sample. Press ENTER.

CALIBRATE Pt1 S.00 EXIT ENTER	9. The Pt1 prompt appears. Use the arrow keys to change the flashing display to the concentration of chlorine determined in the grab sample. Press ENTER to save.
CALIBRATE Cal pt2 EXIT NEXT ENTER	10. The CAL Pt 2 prompt appears. Adjust the concentration of chlorine until it is near the top end of the range, i.e., near concentration C2 shown in Figure 10-2. Press ENTER.
CALIBRATE time del ay EXIT NEXT	11. The tiME dELAy message appears and remains until the sensor read- ing meets the stability criteria set in Section 7.8. To bypass the time delay, press ENTER.
CALIBRATE Grab spl EXIT ENTER	12. The GrAb SPL (grab sample) prompt appears. Take a sample of the process liquid and immediately determine the concentration of free chlorine in the sample. Press ENTER.
CALIBRATE Pt2 6.00 EXIT ENTER	13. The Pt2 prompt appears. Use the arrow keys to change the flashing display to the concentration of chlorine determined in the grab sample. Press ENTER to save.

14. Press RESET to return to the main display.

SECTION 11.0 CALIBRATION — TOTAL CHLORINE

9.1 INTRODUCTION

Total chlorine is the sum of free and combined chlorine. The continuous determination of total chlorine requires two steps. See Figure 11-1. First, the sample flows into a conditioning system (SCS 921) where a pump continuously adds acetic acid and potassium iodide to the sample. The acid lowers the pH, which allows total chlorine in the sample to quantitatively oxidize the iodide in the reagent to iodine. In the second step, the treated sample flows to the sensor. The sensor is a membrane-covered amperometric sensor, whose output is proportional to the concentration of iodine. Because the concentration of iodine is proportional to the concentration of total chlorine, the analyzer can be calibrated to read total chlorine.

Figure 11-2 shows a typical calibration curve for a total chlorine sensor. Because the sensor really measures iodine, calibrating the sensor requires exposing it to a solution containing no iodine (zero standard) and to a solution containing a known amount of iodine (full-scale standard).

The zero standard is necessary because the sensor, even when no iodine is present, generates a small current called the residual current. The transmitter compensates for the residual current by subtracting it from the measured current before converting the result to a total chlorine value. New sensors require zeroing before being placed in service, and sensors should be zeroed whenever the electrolyte solution is replaced. The best zero standard is sample without reagent added.

The purpose of the full-scale standard is to establish the slope of the calibration curve. Because stable total chlorine standards do not exist, **the sensor must be calibrated against a test run on a grab sample of the process liquid.** Several manufacturers offer portable test kits for this purpose. Observe the following precautions when taking and testing the grab sample.

- Take the grab sample from a point as close as possible to the inlet of the SCS921 sample conditioning system. Be sure that taking the sample does not alter the flow through the SCS921. Sample flow must remain between 80 and 100 mL/min.
- Chlorine solutions are unstable. Run the test immediately after taking the sample. Try to calibrate the sensor when the chlorine concentration is at the upper end of the normal operating range.

The Model 499ACL-02 (total chlorine) sensor loses sensitivity at high concentrations of chlorine. The 5081-A transmitter has a dual slope feature that allows the user to compensate for the non-linearity of the sensor. However, for the vast majority of applications, dual slope calibration is unnecessary.

11.2 PROCEDURE — ZEROING THE SENSOR

- 1. Complete the startup sequence described in the SCS921 instruction manual. Adjust the sample flow to between 80 and 100 mL/min, and set the sample pressure to between 3 and 5 psig.
- 2. Remove the reagent uptake tube from the reagent bottle and let it dangle in air. The peristaltic pump will simply pump air into the sample.
- 3. Let the system run until the sensor current is stable. The current will drop rapidly at first and then gradually reach a stable value. To monitor the sensor current, go to the main display. Press DIAG followed by NEXT. The SEnSor Cur prompt appears. Press ENTER to view the sensor current. Note the units: nA is nanoamps; µA is microamps. Typical zero current for a total chlorine sensor is -10 to +30 nanoamps.

A new sensor or a sensor in which the electrolyte solution has been replaced may require several hours (occasionally as long as overnight) to reach a minimum zero current. DO NOT START THE ZERO ROUTINE UNTIL THE SENSOR HAS BEEN IN ZERO SOLUTION FOR AT LEAST TWO HOURS.

CALIBRATE Sensor 0 EXIT NEXT ENTER	5.	The SEnSor O prompt appears. Press ENTER.
CALIBRATE 0 at 0.02 EXIT ENTER	6.	The screen shows the value (in units ppm) below which the reading must be before the zero current will be accepted. The screen shows 0.02 . Therefore, the reading must be below 0.02 ppm before the zero will be accepted. For a typical 499ACL-02 sensor, 0.02 ppm corresponds to about 20 nA. To change the zero limit value, see Section 7.8.3. Press ENTER.
CALIBRATE		NOTE The number shown in the main display may change. During the zero step, the previous zero current is suppressed, and the concentration shown in the main display is calculated assuming the residual current is zero. Once the transmitter accepts the new zero current, it is used in all subsequent measurements.
time del ay	7.	The tiME dELAY message appears and remains until the zero current is below the concentration limit shown in the previous screen. If the current is already below the limit, tiME dELAy will not appear. To bypass the time delay, press ENTER.
CALIBRATE O dOne	8.	O donE shows that the zero step is complete. Press EXIT.
	9.	Press RESET to return to the main display.

4. Press CAL on the remote controller.

11.3 PROCEDURE — FULL SCALE CALIBRATION

- If the sensor was just zeroed, place the reagent uptake tube back in the bottle. Once the flow of reagent starts, it takes about one minute for the sensor current to begin to increase. It may take an hour or longer for the reading to stabilize. Be sure the sample flow stays between 80 and 100 mL/min and the pressure is between 3 and 5 psig.
- 2. Adjust the chlorine concentration until it is near the upper end of the control range. Wait until the transmitter reading is stable before starting the calibration.

11.4 DUAL SLOPE CALIBRATION

Figure 11-3 show the principle of dual slope calibration. Between zero and concentration C1, the sensor response is linear. When the concentration of chlorine becomes greater than C1, the response is non-linear. In spite of the non-linearity, the response can be approximated by a straight line between point 1 and point 2.

Dual slope calibration is rarely needed. It is probably useful in fewer than 5% of applications.

- 1. Be sure the transmitter has been configured for dual slope calibration. See Section 7.8.
- 2. Zero the sensor. See Section 11.2.
- 3. If the sensor was just zeroed, place the reagent uptake tube back in the bottle. Once the flow of reagent starts, it takes about one minute for the sensor current to begin to increase. It may take an hour or longer for the reading to stabilize. Be sure the sample flow stays between 80 and 100 mL/min and the pressure is between 3 and 5 psig.

- 4. Press CAL on the remote controller. Press NEXT.
- CALIBRATE Sensor Cal 5. The SEnSor CAL prompt appears. Press ENTER. NEXT ENTER EXIT CALIBRATE The CAL Pt 1 prompt appears. Adjust the chlorine concentration until it 6. Cal pt1 is near the upper end of the linear range of the sensor. Press ENTER. EXIT NEXT ENTER CALIBRATE The tiME dELAy message appears and remains until the sensor read-7. time del ay ing meets the stability criteria set in Section 7.8. To bypass the time EXIT NEXT delay, press ENTER. NOTE As soon as the stability criteria are met (or ENTER is pressed to by-pass the time delay), the transmitter stores the sensor current. Therefore, if the chlorine level in the process liquid drifts while the sample is being tested, there is no need to compensate for the change when entering test results. CALIBRATE 8. The GrAb SPL (grab sample) prompt appears. Take a sample of the Grab spl process liquid and immediately determine the concentration of total EXIT ENTER chlorine in the sample. Press ENTER.

CALIBRATE Pt1 B.00 EXIT ENTER	 The Pt1 prompt appears. Use the arrow keys to change the flashing display to the concentration of chlorine determined in the grab sample. Press ENTER to save.
CALIBRATE Cal pt2 EXIT NEXT ENTER	10. The CAL Pt 2 prompt appears. Adjust the concentration of chlorine until it is near the top end of the range, i.e., near concentration C2 shown in Figure 11-3. Press ENTER.
CALIBRATE time del ay EXIT NEXT	11. The tiME dELAy message appears and remains until the sensor read- ing meets the stability criteria set in Section 7.8. To bypass the time delay, press ENTER.
CALIBRATE Grab spl EXIT ENTER	12. The GrAb SPL (grab sample) prompt appears. Take a sample of the process liquid and immediately determine the concentration of total chlorine in the sample. Press ENTER.
CALIBRATE Pt2 C.00 EXIT ENTER	13. The Pt2 prompt appears. Use the arrow keys to change the flashing display to the concentration of chlorine determined in the grab sample. Press ENTER to save.

14. Press RESET to return to the main display.

SECTION 12.0 CALIBRATION — OZONE

12.1 INTRODUCTION

As Figure 12-1 shows, an ozone sensor generates a current directly proportional to the concentration of ozone in the sample. Calibrating the sensor requires exposing it to a solution containing no ozone (zero standard) and to a solution containing a known amount of ozone (full-scale standard).

The zero standard is necessary because ozone sensors, even when no ozone is in the sample, generate a small current called the residual current. The transmitter compensates for the residual current by subtracting it from the measured current before converting the result to an ozone value. New sensors require zeroing before being placed in service, and sensors should be zeroed whenever the electrolyte solution is replaced. Either of the following makes a good zero standard:

- Deionized water.
- Tap water known to contain no ozone. Expose tap water to ozone-free air for several hours.

The purpose of the full-scale standard is to establish the slope of the calibration curve. Because stable ozone standards do not exist, **the sensor must be calibrated against a test run on a grab sample of the process liquid.** Several manufacturers offer portable test kits for this purpose. Observe the following precautions when taking and testing the grab sample.

- Take the grab sample from a point as close to the sensor as possible. Be sure that taking the sample does not
 alter the flow of the sample to the sensor. It is best to install the sample tap just downstream from the sensor.
- Ozone solutions are unstable. Run the test immediately after taking the sample. Try to calibrate the sensor when the ozone concentration is at the upper end of the normal operating range.

12.2 PROCEDURE — ZEROING THE SENSOR

 Place the sensor in the zero standard (see Section 12.1). Be sure no air bubbles are trapped against the membrane. The sensor current will drop rapidly at first and then gradually reach a stable zero value. To monitor the sensor current, go to the main display. Press DIAG followed by NEXT. The **SEnSor Cur** prompt appears. Press ENTER to view the sensor current. Note the units: nA is nanoamps; µA is microamps. Typical zero current for an ozone sensor is -10 to +10 nanoamps.

A new sensor or a sensor in which the electrolyte solution has been replace may require several hours (occasionally as long as overnight) to reach a minimum zero current. DO NOT START THE ZERO ROUTINE UNTIL THE SENSOR HAS BEEN IN ZERO SOLUTION FOR AT LEAST TWO HOURS.

2. Press CAL on the remote controller.

CALIBRATE Sensor 0 EXIT NEXT ENTER	3.	The SEnSor O prompt appears. Press ENTER.
CALIBRATE 0 at 0.02 EXIT ENTER	4.	The screen shows the value (in units ppm) below which the reading must be before the zero current will be accepted. The screen shows 0.02 . Therefore, the reading must be below 0.02 ppm before the zero will be accepted. For a typical ozone sensor, 0.02 ppm corresponds to about 7 nA. To change the zero limit value, see Section 7.8.3. Press ENTER.
		NOTE
		The number shown in the main display may change. During the zero step, the previous zero current is suppressed, and the concentration shown in the main display is calculated assuming the residual current is zero. Once the transmitter accepts the new zero current, it is used in all subsequent measurements.
CALIBRATE		
time del ay	5.	The tiME dELAY message appears and remains until the zero current is below the concentration limit shown in the previous screen. If the cur- rent is already below the limit, tiME dELAy will not appear. To bypass the time delay, press ENTER.
CALIBRATE		
0 dOne	6.	O donE shows that the zero step is complete. Press EXIT.
EXIT	7.	Press RESET to return to the main display.
12.3 PROCEDURE — FULL SCALE CALIBRATION

- 1. Place the sensor in the process liquid. Adjust the sample flow until it is within the range recommended for the sensor. Refer to the sensor instruction sheet.
- 2. Adjust the ozone concentration until it is near the upper end of the control range. Wait until the reading is stable before starting the calibration.

 During calibration, the transmitter calculates the sensitivity (nA/ppm) of the sensor. To check the sensitivity, go to the main display. Press DIAG. Press NEXT until the SenSitvtY (sensitivity) prompt appears. Press ENTER to display the sensitivity in nA/ppm. The sensitivity of a 499AOZ sensor is about 350 nA/ppm at 25°C.

SECTION 13.0 CALIBRATION — pH

13.1 INTRODUCTION

A new pH sensor must be calibrated before use. Regular recalibration is also necessary.

A pH measurement cell (pH sensor and the solution to be measured) can be pictured as a battery with an extremely high internal resistance. The voltage of the battery depends on the pH of the solution. The pH meter, which is basically a voltmeter with a very high input impedance, measures the cell voltage and calculates pH using a conversion factor. The value of the voltage-to-pH conversion factor depends on the sensitivity of the pH sensing element (and the temperature). The sensing element is a thin, glass membrane at the end of the sensor. As the glass membrane ages, the sensitivity drops. Regular recalibration corrects for the loss of sensitivity. pH calibration standards, also called buffers, are readily available.

Two-point calibration is standard. Both automatic calibration and manual calibration are available. Auto calibration avoids common pitfalls and reduces errors. Its use is recommended.

In automatic calibration the transmitter recognizes the buffer and uses temperature-corrected pH values in the calibration. The table below lists the standard buffers the controller recognizes. The transmitter also recognizes several technical buffers: Merck, Ingold, and DIN 19267. Temperature-pH data stored in the controller are valid between at least 0 and 60°C.

pH at 25°C (nominal pH)	Standard(s)
1.68	NIST, DIN 19266, JSI 8802, BSI (see note 1)
3.56	NIST, BSI
3.78	NIST
4.01	NIST, DIN 19266, JSI 8802, BSI
6.86	NIST, DIN 19266, JSI 8802, BSI
7.00	(see note 2)
7.41	NIST
9.18	NIST, DIN 19266, JSI 8802, BSI
10.01	NIST, JSI 8802, BSI
12.45	NIST, DIN 19266

Note 1: NIST is National Institute of Standards, DIN is Deutsche Institute für Normung, JSI is Japan Standards Institute, and BSI is British Standards Institute.

Note 2: pH 7 buffer is not a standard buffer. It is a popular commercial buffer in the United States.

During automatic calibration, the controller also measures noise and drift and does not accept calibration data until readings are stable. Calibration data will be accepted as soon as the pH reading is constant to within the factory-set limits of 0.02 pH units for 10 seconds. The stability settings can be changed. See Section 7.10.

In manual calibration, the user judges when pH readings are stable. He also has to look up the pH of the buffer at the temperature it is being used and enter the value in the transmitter.

Once the transmitter completes the calibration, it calculates the calibration slope and offset. The slope is reported as the slope at 25°C. Figure 13-1 defines the terms.

The transmitter can also be standardized. Standardization is the process of forcing the transmitter reading to match the reading from a second pH instrument. Standardization is sometimes called a one-point calibration.

13.2 PROCEDURE — AUTO CALIBRATION

- 1. Verify that auto calibration has been enabled. See Section 7.10.
- 2. Obtain two buffer solutions. Ideally, the buffer pH values should bracket the range of pH values to be measured.
- Remove the sensor from the process liquid. If the temperature of the process and buffer are appreciably different, place the sensor in a container of tap water at the buffer temperature. Do not start the calibration until the sensor has reached the buffer temperature. Thirty minutes is usually adequate.
- 4. Press CAL on the remote controller. CALIBRATE PH Cal 5. Press NEXT until the PH CAL submenu appears. Press ENTER. EXIT NEXT ENTER CAI IBRATE AUto CAL The AUtO CAL submenu appears. Press ENTER. 6. EXIT NEXT ENTER CALIBRATE CAL bF1 The CAL bF1 prompt appears. Rinse the sensor and place it in the first 7. buffer. Be sure the glass bulb and reference junction are completely EXIT NEXT ENTER submerged. Swirl the sensor. The main display will show the pH of the buffer based on the previous calibration. Press ENTER. CALIBRATE bfl **bF1** flashes until the pH reading meets the stability criteria programmed 8. in Section 7.10. EXIT ENTER CALIBRATE Once the reading is stable, the display changes to look like the figure 9. bfl 4.01 at left. The flashing number is the nominal pH, that is, the pH of the EXIT ENTER buffer at 25°C. If the flashing number does not match the nominal pH, press **9** or **9** until the correct pH appears. Press ENTER to save. CALIBRATE CAL bF2 10. The CAL bF2 prompt appears. Remove the sensor from the first buffer. Rinse the sensor and place it in the second buffer. Be sure the glass EXIT NEXT ENTER bulb and reference junction are completely submerged. Swirl the sensor. The display will show the pH of the buffer based on the previous calibration. Press ENTER. CALIBRATE bF2 11. **bF2** flashes until the pH reading meets the stability criteria programmed in Section 7.10. EXIT NFXT ENTER CALIBRATE 12. Once the reading is stable, the display changes to look like the figure bf2 10.00 at left. The flashing number is the nominal pH, that is, the pH of the EXIT ENTER buffer at 25°C. If the flashing number does not match the nominal pH, press **9** or **9** until the correct pH appears. Press ENTER to save.

13.3 PROCEDURE — MANUAL CALIBRATION

- 1. Verify that manual calibration has been enabled. See Section 7.10.
- 2. Obtain two buffer solutions. Ideally, the buffer pH values should bracket the range of pH values to be measured. Also obtain a reliable thermometer.
- Remove the sensor from the process liquid. If the temperature of the process and buffer are appreciably different, place the sensor in a container of tap water at the buffer temperature. Do not start the calibration until the sensor has reached the buffer temperature. Thirty minutes is usually adequate.
 - 4. Press CAL on the remote controller.

13.4 STANDARDIZATION

- 1. The pH measured by the transmitter can be changed to match the reading from a second or reference instrument. The process of making the two readings agree is called standardization, or one-point calibration.
- 2. During standardization, the difference between the two pH values is converted to the equivalent voltage. The voltage, called the reference offset, is added to all subsequent measured cell voltages before they are converted to pH. If a sensor that has been calibrated with buffers is then standardized and placed back in a buffer, the measured pH will differ from the buffer pH by an amount equivalent to the standardization offset.
- 3. Install the sensor in the process liquid. Once readings are stable, measure the pH of the liquid using a reference instrument. Normally, it is acceptable to test a grab sample. Because the pH of the process liquid may change if the temperature changes, measure the pH immediately after taking the grab sample. For poorly buffered samples, it is best to determine the pH of a continuously flowing sample from a point as close as possible to the process sensor.

	2	4.	Press CAL on the remote controller.
CALIBRATE PH CAL EXIT NEXT ENTER	٤ ٤	5.	Press NEXT until the PH CAL submenu appears. Press ENTER.
CALIBRATE Std PH EXIT NEXT ENTER	€ 6	δ.	Press NEXT until the Std PH submenu appears. Press ENTER.
CALIBRATE Std 07.00 EXIT ENTER	< 7	7.	Be sure the process pH and temperature are stable. Measure the pH of the process liquid using the reference instrument. Use the arrow keys to change the flashing display to match the reading from the reference meter. Press ENTER to save.

13.5 pH SLOPE ADJUSTMENT

 If the slope of the glass electrode is known form other measurements, it can be entered directly into the transmitter. The slope must be entered as the slope at 25°C. To calculate the slope at 25°C from the slope at temperature t°C, use the equation:

slope at 25°C = (slope at t°C)
$$\frac{298}{t^{\circ}C + 273}$$

Changing the slope overrides the slope determined from the previous buffer calibration.

2. Press CAL on the remote controller.

SECTION 14.0 CALIBRATION — CURRENT OUTPUT

14.1 GENERAL

Although the transmitter outputs are calibrated at the factory, they can be trimmed in the field to match the reading from a standard current meter. Both the 4 mA and the 20 mA outputs can be trimmed. During output calibration the transmitter is in Hold. The output current will go to the value programmed in Section 7.3.

14.2 PROCEDURE

1. Wire an accurate milliammeter as shown in Figure 14-1.

2. Press CAL on the remote controller.

SECTION 15.0 DIAGNOSTICS

15.1 GENERAL

The 5081-A transmitter can display diagnostic information that is useful in troubleshooting. The diagnostics available depend on the measurement being made. To read diagnostic information, go to the main display and press DIAG on the infrared remote controller. Press NEXT until the mnemonic for the desired information appears. Refer to the appropriate section below for more information.

15.2 DIAGNOSTIC MESSAGES FOR DISSOLVED OXYGEN

TYPE O2	Transmitter is measuring oxygen. Press NEXT to view diagnostics.
SEnSor Cur	Press ENTER to display raw current from sensor (note units).
SEnSitvtY	Press ENTER to display sensitivity. Sensitivity is calculated during calibration. It is the measured current divided by concentration.
O CurrEnt	Press ENTER to display the zero current measured during calibration (note units).
bAr PreSS	Press ENTER to display the barometric pressure used by the transmitter during air calibration.
5081-A-Ht	This is the model number. Press ENTER to display the software revision (SFtr) level. Press NEXT to show the hardware revision (HArdr) level.
FAULtS	Press ENTER to scroll through existing fault messages.

15.3 DIAGNOSTIC MESSAGES FOR OZONE AND TOTAL CHLORINE

TYPE O3 or tCL	Transmitter is measuring ozone (or total chlorine). Press NEXT to view diagnostics.	
SEnSor Cur	Press ENTER to display raw current from sensor (note units).	
SEnSitvtY	Press ENTER to display sensitivity. Sensitivity is calculated during calibration. It is the measured current divided by concentration.	
O CurrEnt	Press ENTER to display the zero current measured during calibration (note units).	
5081-A-Ht	This is the model number. Press ENTER to display the software revision (SFtr) level. Press NEXT to show the hardware revision (HArdr) level.	
FAULtS	Press ENTER to scroll through existing fault messages.	

15.4 DIAGNOSTIC MESSAGES FOR FREE CHLORINE

TYPE FCL	Transmitter is measuring free chlorine. Press NEXT to view diagnostics.
SEnSor Cur	Press ENTER to display raw current from sensor (note units).
SEnSitvtY	Press ENTER to display sensitivity. Sensitivity is calculated during calibration. It is the measured current divided by concentration.
O CurrEnt	Press ENTER to display the zero current measured during calibration (note units).
PH	Press ENTER to view pH diagnostics. Press NEXT to skip pH diagnostics.
InPut	Current pH sensor input voltage in millivolts.
SLOPE	Sensor slope in millivolts per unit pH. Slope is calculated during buffer calibration. See Figure 13.1.
OFFSt	Sensor voltage in millivolts in pH 7 buffer.
GIMP	Glass impedance in $M\Omega$.
5081-A-Ht	This is the model number. Press ENTER to display the software revision (SFtr) level. Press NEXT to show the hardware revision (HArdr) level.
FAULtS	Press ENTER to scroll through existing fault messages.

SECTION 16.0 TROUBLESHOOTING

16.1 WARNING AND FAULT MESSAGES

- 16.2 TROUBLESHOOTING WHEN A WARNING OR FAULT MESSAGE IS SHOWING
- 16.3 TEMPERATURE MEASUREMENT AND CALIBRATION PROBLEMS
- 16.4 OXYGEN MEASUREMENT AND CALIBRATION PROBLEMS
- 16.5 FREE CHLORINE MEASUREMENT AND CALIBRATION PROBLEMS
- **16.6 TOTAL CHLORINE MEASUREMENT AND CALIBRATION PROBLEMS**
- 16.7 OZONE MEASUREMENT AND CALIBRATION PROBLEMS
- 16.8 pH MEASUREMENT AND CALIBRATION PROBLEMS
- 16.9 SIMULATING INPUT CURRENTS DISSOLVED OXYGEN
- 16.10 SIMULATING INPUT CURRENTS CHLORINE AND OZONE
- 16.11 SIMULATING INPUTS pH
- **16.12 SIMULATING TEMPERATURE**
- **16.13 MEASURING REFERENCE VOLTAGE**

16.1 WARNING AND FAULT MESSAGES

The Model 5081-A transmitter continuously monitors the sensor and transmitter for conditions that cause erroneous measurements. When a problem occurs, the transmitter displays either a warning or fault message. A warning alerts the user that a potentially disabling condition exists. There is a high probability that the measurement is in error. A fault alerts the user that a disabling condition exists. If a fault message is showing, all measurements should be regarded as erroneous.

When a WARNING condition exists:

- 1. The main display remains stable; it does not flash.
- 2. A warning message appears alternately with the temperature and output readings in the second line of the display. See Section 15.4 for an explanation of the warning messages and suggested ways of correcting the problem.

When a FAULT exists:

- 1. The main display flashes.
- 2. The words FAULT and HOLD appear in the main display.
- 3. A fault message appears alternately with the temperature and output readings in the second line of the display. See Section 15.4 for an explanation of the fault messages and suggested ways of correcting the problem.
- 4. The output current will remain at the present value or go to the programmed fault value. See Section 7.3 for details on how to program the current generated during a fault condition.
- If the transmitter is in HOLD when the fault occurs, the output remains at the programmed hold value. To alert the user that a fault exists, the word FAULT appears in the main display, and the display flashes. A fault or diagnostic message also appears.
- 6. If the transmitter is simulating an output current when the fault occurs, the transmitter continues to generate the simulated current. To alert the user that a fault exists, the word FAULT appears in the display, and the display flashes.

16.2 TROUBLESHOOTING WHEN A FAULT OR WARNING MESSAGE IS SHOWING

Message	Explanation	See Section
OuEr rAnGE	Over range, measurement exceeds display limit	16.2.1
AMP FAIL	Amperometric sensor failure, sensor current is too high	16.2.1
bAd SEnSor	Bad sensor, sensor current is a large negative number	16.2.2
0 too biG	Zero current is too large, sensor was zeroed while current exceeded 100 nA	16.2.3
CAL Error	Calibration error, sensitivity (nA/ppm) is too high or too low	16.2.4
nEEd 0 CAL	Sensor needs re-zeroing, reading is too negative	16.2.5
bAd rtd	Bad temperature reading	16.2.6
TEMP HI	Temperature reading exceeds 150°C	16.2.6
TEMP LO	Temperature reading is less than -15°C	16.2.6
rtd OPEn	rtd OPEn RTD or thermistor is open	
SenSE OPEn	SenSE OPEn Sense line is not connected	
PH in	PH in Raw millivolt reading from pH sensor is too large	
SLOPE HI pH sensor slope exceeds 62 mV/pH		16.2.9
SLOPE LO pH sensor slope is less than 40 mV/pH		16.2.9
-0- OFFSEt	-0- OFFSEt Zero offset during standardization exceeds programmed limit	
GLASS FAIL	GLASS FAIL Measured glass impedance is less than programmed limit	
FACt FAIL	Unit has not been factory-calibrated	16.2.12
CPU FAIL	Internal CPU tests have failed	16.2.13
ROM FAIL	Internal memory has failed	16.2.13
AdC	Analog to digital conversion failed	16.2.14
bAd Gnd	Bad ground	16.2.15
In too biG	too biG mV signal from pH sensor is too large	
RitE Err	CPU PCB jumper (JP-1) has been removed	16.2.17

16.2.1 OuEr rAnGE and AMP FAIL.

These error messages appear if the sensor current is too high. Normally, excessive sensor current implies that the amperometric sensor is miswired or the sensor has failed.

- 1. Verify that wiring is correct and connections are tight. Be sure to check connections at the junction box if one is being used. See Section 3.0.
- 2. Replace the sensor membrane and electrolyte solution and clean the cathode if necessary. See the sensor instruction sheet for details.
- 3. Replace the sensor.

16.2.2 bAd SEnSor.

Bad sensor means that the sensor current is a large negative number.

- bAd SEnSor may appear for a while when the sensor is first placed in service. Observe the sensor current (go to SEnSor Cur under the diagnostic menu). If the sensor current is moving in the positive direction, there is probably nothing wrong and the error message should soon disappear.
- 2. Verify that wiring is correct. Pay particular attention the anode and cathode connections.
- 3. Verify that the transmitter is configured for the correct measurement. Configuring the measurement sets (among other things) the polarizing voltage. Applying the wrong polarizing voltage to the sensor can cause a negative current.
- 4. Replace the sensor membrane and electrolyte solution and clean the cathode if necessary. See the sensor instruction sheet for details.
- 5. Replace the sensor.

16.2.3 0 too bIG

Normally, the transmitter will not accept a zero current until the current has fallen below a reasonable value. See the calibration section for the analyte being determined for typical zero currents. However, the user can force the transmitter to accept the present current as the zero value. The **0 too bIG** warning appears if the current at the time the sensor is zeroed is greater than 100 nA. Because the transmitter subtracts the zero current from the measured current before converting the result to a concentration, zeroing too soon will cause readings to be low.

- 1. Allow adequate time, possibly as long as overnight, for the sensor to stabilize before starting the zero routine.
- 2. Verify that the solution used for zeroing the sensor contains no analyte. Refer to the appropriate calibration section for details.
- 3. Replace the sensor membrane and electrolyte solution and clean the cathode if necessary. See the sensor instruction sheet for details.
- 4. Replace the sensor.

16.2.4 CAL Error

At the end of the calibration step, the transmitter calculates the sensitivity in nA/ppm. If the sensitivity is outside the range normally expected, the transmitter displays the **CAL Error** message and the transmitter does not update the calibration. For assistance, refer to the troubleshooting section specific for the sensor.

16.2.5 nEEd 0 CAL

nEEd 0 CAL means that the concentration of the analyte is too negative.

- 1. Check the zero current (go to **0 CurrEnt** under the diagnostic menu). If the zero current is appreciably greater than the measurement current, the **nEEd 0 CAL** warning will appear.
- 2. Verify that the zero current is close to the value given in the calibration section for the analyte being determined.
- 3. Rezero the sensor. Refer to the calibration and troubleshooting sections for the sensor for more information.

16.2.6 bAd rtd, TEMP HI, TEMP LO, and rtd OPEn

These messages usually mean that the RTD (or thermistor in the case of the Hx438 and GX448 sensors) is open or shorted or there is an open or short in the connecting wiring.

- 1. Verify all wiring connections, including wiring in a junction box if one is being used.
- 2. Disconnect the RTD IN, RTD SENSE, and RTD RETURN leads or the thermistor leads at the transmitter. Be sure to note the color of the wire and where it was attached. Measure the resistance between the RTD IN and RETURN leads. For a thermistor, measure the resistance between the two leads. The resistance should be close to the value in the table in Section 16.12. If the temperature element is open or shorted, replace the sensor. In the meantime, use manual temperature compensation.
- 3. For oxygen measurements using the HX438, the Gx448, or other steam-sterilizable sensor using a 22kNTC, the **TEMP HI** error will appear if the controller was not properly configured. See Section 7.4.3 or 7.4.4.

16.2.7 SenSE OPEn

Most Rosemount Analytical sensors use a Pt100 or Pt1000 in a three-wire configuration (see Figure 16-5). The in and return leads connect the RTD to the measuring circuit in the analyzer. A third wire, called the sense line, is connected to the return lead. The sense line allows the analyzer to correct for the resistance of the in and return leads and to correct for changes in lead wire resistance with changes in ambient temperature.

- 1. Verify all wiring connections, including wiring in a junction box if one is being used.
- 2. Disconnect the RTD SENSE and RTD RETURN wires. Measure the resistance between the leads. It should be less than 5 Ω . If the sense line is open, replace the sensor as soon as possible.
- 3. The transmitter can be operated with the sense line open. The measurement will be less accurate because the transmitter can no longer compensate for lead wire resistance. However, if the sensor is to be used at approximately constant ambient temperature, the lead wire resistance error can be eliminated by calibrating the sensor at the measurement temperature. Errors caused by changes in ambient temperature cannot be eliminated. To make the error message disappear, connect the RTD SENSE and RETURN terminals with a jumper.

16.2.8 pH In

pH In means the voltage from the pH measuring cell is too large.

- 1. Verify all wiring connections, including connections in a junction box.
- 2. Check that the pH sensor is completely submerged in the process liquid.
- 3. Check the pH sensor for cleanliness. If the sensor looks fouled or dirty, clean it. Refer to the sensor instruction manual for cleaning procedures.
- 4. Replace the sensor.

16.2.9 SLOPE HI or SLOPE LO

Once the two-point (manual or automatic) pH calibration is complete, the transmitter automatically calculates the sensor slope at 25°C. If the slope is greater than 62 mV/pH the transmitter displays the **SLOPE HI** error. If the slope is less than 45 mV/pH, the transmitter displays the **SLOPE LO** error. The transmitter will not update the calibration.

- 1. Check the buffers. Inspect the buffer solutions for obvious signs of deterioration, such as turbidity or mold growth. Neutral and slightly acidic buffers are highly susceptible to molds. Alkaline buffers (pH 9 and greater), if they have been exposed to air for long periods, may also be inaccurate. Alkaline buffers absorb carbon dioxide from the atmosphere, which lowers the pH. If a high pH buffer was used in the failed calibration, repeat the calibration using fresh buffer. If fresh buffer is not available, use a lower pH buffer. For example, use pH 4 and pH 7 buffer instead of pH 7 and pH 10 buffer.
- Allow adequate time for temperature equilibration. If the sensor was in a process liquid substantially hotter or colder than the buffer, place it in a container of water at ambient temperature for at least 20 minutes before starting the calibration.
- 3. If manual calibration was done, verify that correct pH values were entered.
- 4. Verify all wiring connections, including connections at a junction box.
- 5. Check the pH sensor for cleanliness. If the sensor looks fouled or dirty, clean it. Refer to the sensor instruction manual for cleaning procedures.
- 6. Replace the sensor.

16.2.10 -0- OFFSEt

The **-0- OFFSEt** message appears if the standardization offset (in mV) exceeds the programmed limit. The default limit is 60 mV, which is equivalent to about a unit change in pH. Before increasing the limit to make the **-0- OFFSEt** message disappear, check the following:

- 1. Verify that the reference pH meter is working properly and is properly calibrated.
- 2. Verify that the process pH sensor is working. Check its response in buffers.
- 3. If the transmitter is standardized against pH determined in a grab sample, be sure to measure the pH before the temperature of the grab sample changes more than a few degrees.
- 4. Verify that the process sensor is fully immersed in the liquid. If the sensor is not completely submerged, it may be measuring the pH of the liquid film covering the sensor. The pH of this film may be different from the pH of the bulk liquid.
- 5. Check the pH sensor for cleanliness. If the sensor looks fouled or dirty, clean it. Refer to the sensor instruction manual for cleaning procedures.
- 6. A large standardization offset may be caused by a poisoned reference electrode. Poisoning agents can cause the pH to be offset by as much as two pH units. To check the reference voltage, see Section 16.13.

16.2.11 GLASS FAIL

GLASS FAIL means the pH sensor glass impedance is outside the programmed limits. To read the glass impedance, go to the main display and press DIAG. Scroll to the **PH** prompt and press ENTER. Press NEXT until **GIMP** (glass impedance) is showing. The default lower limit is 10 M Ω . The default upper limit is 1000 M Ω . Low glass impedance means the glass membrane is broken or cracked. High glass impedance means the membrane is aging and nearing the end of its useful life. High impedance can also mean the pH sensor is not completely submerged in the process liquid.

- 1. Check sensor wiring, including connections in a junction box.
- 2. Verify that the sensor is completely submerged in the process liquid.
- 3. Verify that the software switch identifying the position of the preamplifier is properly set. See Section 7.10.3.
- 4. Check the sensor response in buffers. If the sensor can be calibrated, it is in satisfactory condition. To disable the GLASS FAIL message reprogram the glass impedance limits to include the measured impedance. If the sensor cannot be calibrated, it has failed and must be replaced.

16.2.12 FACt FAIL

FACt FAIL means the unit has not been factory calibrated. Call the factory. The transmitter will probably need to be returned to the factory for calibration.

16.2.13 CPU FAIL and ROM FAIL

CPU FAIL means that the processing unit has failed internal tests. ROM FAIL means that the internal memory has failed.

- 1. Cycle the power. Leave the transmitter without power for at least 30 seconds before returning power to it.
- 2. If cycling the power fails to clear the error message, the CPU board probably needs replacing. Call the factory for assistance.

16.2.14 AdC

AdC means the analog to digital converter has failed.

- 1. Verify that sensor wiring is correct and connections are tight. Be sure to check connections at the junction box if one is being used. See Section 3.0.
- 2. Disconnect sensor(s) and simulate temperature and sensor input.

To simulate	See Section
Dissolved oxygen	16.9
Ozone or chlorine	16.10
рН	16.11
Temperature	16.12

If the transmitter does not respond to simulated signals, the analog PCB has probably failed. Call the factory for assistance.

16.2.15 bAd Gnd

bAd Gnd usually means a problem with the analog PCB. Call the factory for assistance.

16.2.16 In too biG

In too biG means the raw millivolt signal from the pH sensor is too large.

- 1. Verify that sensor wiring is correct and connections are tight. Be sure to check connections at the junction box if one is being used. See section 3.0.
- 2. Replace the pH sensor with a sensor known to be working.
- 3. If replacing the pH sensor does not cause the message to disappear, call the factory for assistance.

16.2.17 RitE Err

Program settings in the 5081-A can be protected against accidental changes by setting a three-digit security code. Settings can further be protected by removing a jumper (JP-1) from the CPU board. If JP-1 has been removed program, settings cannot be changed.

16.3 TEMPERATURE MEASUREMENT AND CALIBRATION PROBLEMS

16.3.1 Temperature measured by standard was more than 1°C different from transmitter.

- 1. Is the standard thermometer, RTD, or thermistor accurate? General purpose liquid-in-glass thermometers, particularly ones that have been mistreated can have surprisingly large errors.
- 2. Is the temperature element in the sensor completely submerged in the liquid?
- 3. Is the standard temperature sensor submerged to the correct level?

16.4 OXYGEN MEASUREMENT AND CALIBRATION PROBLEMS

Problem	See Section
Zero current is substantially greater than the value in Section 9.2	16.4.1
Zero reading is unstable	16.4.2
Sensor current during air calibration is substantially different from the value in Section 9.3	16.4.3
Process and standard instrument readings during in-process calibration are substantially different	16.4.4
Process readings are erratic	16.4.5
Readings drift	16.4.6
Sensor does not respond to changes in oxygen level	16.4.7
Readings are too low	16.4.8

16.4.1 Zero current is substantially greater than the value in Section 9.2.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0.
- 2. Is the membrane completely covered with zero solution and are air bubbles not trapped against the membrane? Swirl and tap the sensor to release air bubbles.
- 3. Is the zero solution fresh and properly made? Zero the sensor in a solution of 5% sodium sulfite in water. Prepare the solution immediately before use. It has a shelf life of only a few days.
- 4. If the sensor is being zeroed with nitrogen gas, verify that the nitrogen is oxygen-free and the flow is adequate to prevent back-diffusion of air into the chamber.
- 5. The major contributor to the zero current is dissolved oxygen in the electrolyte solution inside the sensor. A long zeroing period usually means that an air bubble is trapped in the electrolyte. To ensure the 499ADO or 499A TrDO sensor contains no air bubbles, carefully follow the procedure in the sensor manual for filling the sensor. If the electrolyte solution has just been replaced, allow several hours for the zero current to stabilize. On rare occasions, the sensor may require as long as overnight to zero.
- 6. Check the membrane for damage and replace the membrane if necessary

16.4.2 Zero reading is unstable.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0. Verify that all wiring connections are tight.
- 2. Readings are often erratic when a new or rebuilt sensor is first placed in service. Readings usually stabilize after an hour.
- 3. Is the space between the membrane and cathode filled with electrolyte solution and is the flow path between the electrolyte reservoir and the membrane clear? Often the flow of electrolyte can be started by simply holding the sensor with the membrane end pointing down and sharply shaking the sensor a few times as though shaking down a clinical thermometer. If shaking does not work, perform the checks below. Refer to the sensor instruction manuals for additional information.

For 499ADO and 499A TrDO sensors, verify that the holes at the base of the cathode stem are open (use a straightened paperclip to clear the holes). Also verify that air bubbles are not blocking the holes. Fill the reservoir and establish electrolyte flow to the cathode. Refer to the sensor instruction manual for the detailed procedure.

For Gx438 and Hx438 sensors, the best way to ensure that there is an adequate supply of electrolyte solution is to simply add fresh electrolyte solution to the sensor. Refer to the sensor instruction manual for details.

16.4.3 Sensor current during air calibration is substantially different from the value in Section 9.3.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0. Verify that all connections are tight.
- 2. Is the membrane dry? The membrane must be dry during air calibration. A droplet of water on the membrane during air calibration will lower the sensor current and cause an inaccurate calibration.
- 3. If the sensor current in air is very low and the sensor is new, either the electrolyte flow has stopped or the membrane is torn or loose. For instructions on how to restart electrolyte flow see Section 16.4.2 or refer to the sensor instruction manual. To replace a torn membrane, refer to the sensor instruction manual.
- 4. Is the temperature low? Sensor current is a strong function of temperature. The sensor current decreases about 3% for every °C drop in temperature.
- 5. Is the membrane fouled or coated? A dirty membrane inhibits diffusion of oxygen through the membrane, reducing the sensor current. Clean the membrane by rinsing it with a stream of water from a wash bottle or by gently wiping the membrane with a soft tissue. If cleaning the membrane does not improve the sensor response, replace the membrane and electrolyte solution. If necessary, polish the cathode. See the sensor instruction sheet for more information.

16.4.4 Process and standard instrument readings during in-process calibration are substantially different.

This error warning appears if the current process reading and the reading it is being changed to, ie, the reading from the standard instrument, are appreciably different.

- 1. Is the standard instrument properly zeroed and calibrated?
- 2. Are the standard and process sensor measuring the same sample? Place the sensors as close together as possible.
- 3. Is the process sensor working properly? Check the response of the process sensor in air and in sodium sulfite solution.

16.4.5 Process readings are erratic.

- 1. Readings are often erratic when a new sensor or a rebuilt sensor is first placed in service. The current usually stabilizes after a few hours.
- 2. Is the sample flow within the recommended range? High sample flow may cause erratic readings. Refer to the sensor instruction manual for recommended flow rates.
- 3. Gas bubbles impinging on the membrane may cause erratic readings. Orienting the sensor at an angle away from vertical may reduce the noise.
- 4. The holes between the membrane and electrolyte reservoir might be plugged (applies to Models 499A DO and 499A TrDO sensors only). Refer to Section 16.4.2.
- 5. Verify that wiring is correct. Pay particular attention to shield and ground connections.
- 6. Is the membrane in good condition and is the sensor filled with electrolyte solution? Replace the fill solution and electrolyte. Refer to the sensor instruction manual for details.

16.4.6 Readings drift.

- 1. Is the sample temperature changing? Membrane permeability is a function of temperature. For the 499ADO and 499ATrDO sensors, the time constant for response to a temperature change is about five (5) minutes. Therefore, the reading may drift for a while after a sudden temperature change. The time constant for the Gx438 and Hx448 sensors is much shorter; these sensors respond fairly rapidly to temperature changes.
- 2. Is the membrane clean? For the sensor to work properly oxygen must diffuse freely through the membrane. A coating on the membrane will interfere with the passage of oxygen, resulting in slow response.
- Is the sensor in direct sunlight? If the sensor is in direct sunlight during air calibration, readings will drift as the sensor warms up. Because the temperature reading lags the true temperature of the membrane, calibrating the sensor in direct sunlight may introduce an error.
- 4. Is the sample flow within the recommended range? Gradual loss of sample flow will cause downward drift.
- 5. Is the sensor new or has it been recently serviced? New or rebuilt sensors may require several hours to stabilize.

16.4.7 Sensor does not respond to changes in oxygen level.

- 1. If readings are being compared with a portable laboratory instrument, verify that the laboratory instrument is working.
- 2. Is the membrane clean? Clean the membrane and replace it if necessary. Check that the holes at the base of the cathode stem are open. Use a straightened paper clip to clear blockages. Replace the electrolyte solution.
- 3. Replace the sensor.

16.4.8 Oxygen readings are too low.

1. Low readings can be caused by zeroing the sensor before the residual current has reached a stable minimum value. Residual current is the current the sensor generates even when no oxygen is in the sample. Because the residual current is subtracted from subsequent measured currents, zeroing before the current is a minimum can lead to low results.

Example: the true residual (zero) current for a 499ADO sensor is $0.05 \ \mu$ A, and the sensitivity based on calibration in watersaturated air is 2.35 μ A/ppm. Assume the measured current is 2.00 μ A. The true concentration is (2.00 - 0.05)/2.35 or 0.83 ppm. If the sensor was zeroed prematurely when the current was 0.2 μ A, the measured concentration will be (2.00 - 0.2)/2.35 or 0.77 ppm. The error is 7.2%. Suppose the measured current is 5.00 μ A. The true concentration is 2.11 ppm, and the measured concentration is 2.05 ppm. The error is now 3.3%. The absolute difference between the readings remains the same, 0.06 ppm.

 Sensor response depends on flow. If the flow is too low, readings will be low and flow sensitive. Verify that the flow past the sensor equals or exceeds the minimum value. See the sensor instruction manual for recommended flows. If the sensor is in an aeration basin, move the sensor to an area where the flow or agitation is greater.

16.5 FREE CHLORINE MEASUREMENT AND CALIBRATION PROBLEMS

Problem	See Section
Zero current is substantially outside the range -10 to 10 nA	16.5.1
Zero reading is unstable	16.5.2
Sensor current during calibration is substantially less than about 250 nA/ppm at 25°C and pH 7	16.5.3
Process readings are erratic	16.5.4
Readings drift	16.5.5
Sensor does not respond to changes in chlorine level	16.5.6
Chlorine reading spikes following rapid change in pH (automatic pH correction only)	16.5.7
Readings are too low	16.5.8

16.5.1 Zero current is substantially outside the range -10 to 10 nA.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0.
- 2. Is the zero solution chlorine-free? Take a sample of the solution and test it for free chlorine level. The concentration should be less than 0.02 ppm.
- 3. Has adequate time been allowed for the sensor to reach a minimum stable residual current? It may take several hours, sometimes as long as overnight, for a new sensor to stabilize.
- 4. Check the membrane for damage and replace it if necessary.

16.5.2 Zero reading is unstable.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0. Verify that all wiring connections are tight.
- 2. Readings are often erratic when a new or rebuilt sensor is first placed in service. Readings usually stabilize after about an hour.
- 3. Is the conductivity of the zero solution greater than 50 μS/cm? DO NOT USE DEIONIZED OR DISTILLED WATER TO ZERO THE SENSOR. The zero solution should contain at least 0.5 grams of sodium chloride per liter.
- 4. Is the space between the membrane and cathode filled with electrolyte solution and is the flow path between the electrolyte reservoir and membrane clear? Often the flow of electrolyte and be started by simply holding the sensor with the membrane end pointing down and sharply shaking the sensor a few times as though shaking down a clinical thermometer.

If shaking does not work, try clearing the holes around the cathode stem. Hold the sensor with the membrane end pointing up. Unscrew the membrane retainer and remove the membrane assembly. Be sure the wood ring remains with the membrane assembly. Use the end of a straightened paper clip to clear the holes at the base of the cathode stem. Replace the membrane.

Verify that the sensor is filled with electrolyte solution. Refer to the sensor instruction manual for details.

16.5.3 Sensor current during calibration is substantially less than 250 nA/ppm at 25°C and pH 7.

- Is the temperature low or is the pH high? Sensor current is a strong function of pH and temperature. The sensor current decreases about 3% for every °C drop in temperature. Sensor current also decreases as pH increases. Above pH 7, a 0.1 unit increase in pH lowers the current about 5%.
- 2. Sensor current depends on the rate of sample flow past the sensor tip. If the flow is too low, chlorine readings will be low. Refer to the sensor instruction sheet for recommended sample flows.
- 3. Low current can be caused by lack of electrolyte flow to the cathode and membrane. See step 4 in Section 16.5.2.
- 4. Is the membrane fouled or coated? A dirty membrane inhibits diffusion of free chlorine through the membrane, reducing the sensor current and increasing the response time. Clean the membrane by rinsing it with a stream of water from a wash bottle. DO NOT use a membrane or tissue to wipe the membrane.
- 5. If cleaning the membrane does not improve the sensor response, replace the membrane and electrolyte solution. If necessary, polish the cathode. See the sensor instruction sheet for details.

16.5.4 Process readings are erratic.

- 1. Readings are often erratic when a new sensor or a rebuilt sensor is first placed in service. The current usually stabilizes after a few hours.
- 2. Is the sample flow within the recommended range? High sample flow may cause erratic readings. Refer to the sensor instruction sheet for recommended flow rates.
- 3. Are the holes between the membrane and the electrolyte reservoir open. Refer to Section 16.5.2.
- 4. Verify that wiring is correct. Pay particular attention to shield and ground connections.
- 5. If automatic pH correction is being used, check the pH reading. If the pH reading is noisy, the chlorine reading will also be noisy. If the pH sensor is the cause of the noise, use manual pH correction until the problem with the pH sensor can be corrected.
- 6. Is the membrane in good condition and is the sensor filled with electrolyte solution? Replace the fill solution and electrolyte. Refer to the sensor instruction manual for details.

16.5.5 Readings drift.

- 1. Is the sample temperature changing? Membrane permeability is a function of temperature. The time constant for the 499ACL-01 sensor is about five minutes. Therefore, the reading may drift for a while after a sudden temperature change.
- 2. Is the membrane clean? For the sensor to work properly, chlorine must diffuse freely through the membrane. A coating on the membrane will interfere with the passage of chlorine, resulting in slow response. Clean the membrane by rinsing it with a stream of water from a wash bottle. **DO NOT** use a membrane or tissue to wipe the membrane.
- 3. Is the sample flow within the recommended range? Gradual loss of sample flow will cause a downward drift.
- 4. Is the sensor new or has it been recently serviced? New or rebuilt sensors may require several hours to stabilize.
- 5. Is the pH of the process changing? If manual pH correction is being used, a gradual change in pH will cause a gradual change in the chlorine reading. As pH increases, chlorine readings will decrease, even though the free chlorine level (as determined by a grab sample test) remained constant. If the pH change is no more than about 0.2, the change in the chlorine reading will be no more than about 10% of reading. If the pH changes are more than 0.2, use automatic pH correction.

16.5.6 Sensor does not respond to changes in chlorine level.

- 1. Is the grab sample test accurate? Is the grab sample representative of the sample flowing to the sensor?
- Is the pH compensation correct? If the transmitter is using manual pH correction, verify that the pH value in the transmitter equals the actual pH to within ±0.1 pH. If the transmitter is using automatic pH correction, check the calibration of the pH sensor.
- 3. Is the membrane clean? Clean the membrane and replace it if necessary. Check that the holes at the base of the cathode stem are open. Use a straightened paper clip to clear blockages. Replace the electrolyte solution.
- 4. Replace the sensor.

16.5.7 Chlorine readings spike following sudden changes in pH.

Changes in pH alter the relative amounts of hypochlorous acid (HOCI) and hypochlorite ion (OCI⁻) in the sample. Because the sensor responds only to HOCI, an increase in pH causes the sensor current (and the apparent chlorine level) to drop even though the actual free chlorine concentration remained constant. To correct for the pH effect, the transmitter automatically applies a correction. Generally, the pH sensor responds faster than the chlorine sensor. After a sudden pH change, the transmitter will temporarily over-compensate and gradually return to the correct value. The time constant for return to normal is about five (5) minutes.

16.5.8 Chlorine readings are too low.

- 1. Was the sample tested as soon as it was taken? Chlorine solutions are unstable. Test the sample immediately after collecting it. Avoid exposing the sample to sunlight.
- Low readings can be caused by zeroing the sensor before the residual current has reached a stable minimum value. Residual current is the current the sensor generates even when no chlorine is in the sample. Because the residual current is subtracted from subsequent measured currents, zeroing before the current is a minimum can lead to low results. See Section 16.4.8 for more information.
- 3. Sensor response depends on flow. If the flow is too low, readings will be low and flow sensitive. Verify that the flow past the sensor equals or exceeds the minimum value. See the sensor instruction manual for recommended flows.

16.6 TOTAL CHLORINE MEASUREMENT AND CALIBRATION PROBLEMS

Refer to the instruction manual for the SCS921 for a complete troubleshooting guide.

16.7 OZONE MEASUREMENT AND CALIBRATION PROBLEMS

Problem	See Section
Zero current is substantially outside the range -10 to 10 nA	16.7.1
Zero reading is unstable	16.7.2
Sensor current during calibration is substantially less than about 350 nA/ppm at 25°C	16.7.3
Process readings are erratic	16.7.4
Readings drift	16.7.5
Sensor does not respond to changes in ozone level	16.7.6
Ozone readings are too low	16.7.7

16.7.1 Zero current is substantially outside the range -10 to 10 nA.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0.
- 2. Is the zero solution ozone free? Test the zero solution for ozone level. The concentration should be less than 0.02 ppm.
- 3. Has adequate time been allowed for the sensor to reach a minimum stable residual current? It may take several hours, sometimes as long as overnight, for a new sensor to stabilize.
- 4. Check the membrane for damage and replace it if necessary.

16.7.2 Zero reading is unstable.

- 1. Is the sensor properly wired to the transmitter? See Section 3.0. Verify that all wiring connections are tight.
- 2. Readings are often erratic when a new or rebuilt sensor is first placed in service. Readings usually stabilize after about an hour.
- 3. Is the space between the membrane and cathode filled with electrolyte solution and is the flow path between the electrolyte reservoir and membrane clear? Often the flow of electrolyte and be started by simply holding the sensor with the membrane end pointing down and sharply shaking the sensor a few times as though shaking down a clinical thermometer.

If shaking does not work, try clearing the holes around the cathode stem. Hold the sensor with the membrane end pointing up. Unscrew the membrane retainer and remove the membrane assembly. Be sure the wood ring remains with the membrane assembly. Use the end of a straightened paper clip to clear the holes at the base of the cathode stem. Replace the membrane.

Verify that the sensor is filled with electrolyte solution. Refer to the sensor instruction manual for details.

16.7.3 Sensor current during calibration is substantially less than 350 nA/ppm at 25°C.

- 1. Sensor current is a strong function of temperature. The sensor current decreases about 3% for every °C drop in temperature.
- 2. Sensor current depends on the rate of sample flow past the sensor tip. If the flow is too low, ozone readings will be low. Refer to the sensor instruction sheet for recommended sample flows.
- 3. Low current can be caused by lack of electrolyte flow to the cathode and membrane. See step 3 in Section 16.7.2.
- 4. Is the membrane fouled or coated? A dirty membrane inhibits diffusion of ozone through the membrane, reducing the sensor current and increasing the response time. Clean the membrane by rinsing it with a stream of water from a wash bottle or gently wipe the membrane with a soft tissue.

If cleaning the membrane does not improve the sensor response, replace the membrane and electrolyte solution. If necessary, polish the cathode. See the sensor instruction sheet for details.

16.7.4 Process readings are erratic.

- 1. Readings are often erratic when a new sensor or a rebuilt sensor is first placed in service. The current usually stabilizes after a few hours.
- 2. Is the sample flow within the recommended range? High sample flow may cause erratic readings. Refer to the sensor instruction sheet for recommended flow rates.
- 3. Are the holes between the membrane and the electrolyte reservoir open. Refer to Section 16.7.2.
- 4. Verify that wiring is correct. Pay particular attention to shield and ground connections.
- 5. Is the membrane in good condition and is the sensor filled with electrolyte solution? Replace the fill solution and electrolyte. Refer to the sensor instruction manual for details.

16.7.5 Readings drift.

- 1. Is the sample temperature changing? Membrane permeability is a function of temperature. The time constant for the 499AOZ sensor is about five minutes. Therefore, the reading may drift for a while after a sudden temperature change.
- 2. Is the membrane clean? For the sensor to work properly, ozone must diffuse freely through the membrane. A coating on the membrane will interfere with the passage of ozone, resulting in slow response. Clean the membrane by rinsing it with a stream of water from a wash bottle, or gently wipe the membrane with a soft tissue.
- 3. Is the sample flow within the recommended range? Gradual loss of sample flow will cause a downward drift.
- 4. Is the sensor new or has it been recently serviced. New or rebuilt sensors may require several hours to stabilize.

16.7.6 Sensor does not respond to changes in ozone level.

- 1. Is the grab sample test accurate? Is the grab sample representative of the sample flowing to the sensor?
- 2. Is the membrane clean? Clean the membrane and replace it if necessary. Check that the holes at the base of the cathode stem are open. Use a straightened paper clip to clear blockages. Replace the electrolyte solution.
- 3. Replace the sensor.

16.7.7 Ozone readings are too low.

- 1. Was the sample tested as soon as it was taken? Ozone solutions are highly unstable. Test the sample immediately after collecting it.
- Low readings can be caused by zeroing the sensor before the residual current has reached a stable minimum value. Residual current is the current the sensor generates even when no ozone is in the sample. Because the residual current is subtracted from subsequent measured currents, zeroing before the current is a minimum can lead to low results. See Section 16.4.8 for more information.
- 3. Sensor response depends on flow. If the flow is too low, readings will be low and flow sensitive. Verify that the flow past the sensor equals or exceeds the minimum value. See the sensor instruction manual for recommended flows.

Problem	See Section
SLOPE HI or SLOPE LO message is showing	16.8.1
-0- OFFSEt message is showing	16.8.2
Transmitter will not accept manual slope	16.8.3
Sensor does not respond to known pH changes	16.8.4
Process pH is slightly different from the expected value	16.8.5
Process pH reading changes when flow changes	16.8.6
Process pH is grossly wrong and/or noisy	16.8.7
Process readings are noisy	16.8.8

16.8 pH MEASUREMENT AND CALIBRATION PROBLEMS

16.8.1 SLOPE HI or SLOPE LO message is showing.

Refer to Section 16.2.9 for assistance.

16.8.2 -0- OFFSEt message is showing.

Refer to Section 16.2.10 for assistance.

16.8.3 Transmitter will not accept manual slope.

If the sensor slope is known from other sources, it can be entered directly into the transmitter. The transmitter will not accept a slope (at 25°) outside the range 45 to 60 mV/pH. If the user attempts to enter a slope less than 45 mV/pH, the transmitter will automatically change the entry to 45. If the user attempts to enter a slope greater than 60 mV/pH, the transmitter will change the entry to 60 mV/pH. See Section 14.8.1 for troubleshooting sensor slope problems.

16.8.4 Sensor does not respond to known pH changes.

- 1. Did the expected pH change really occur? If the process pH reading was not what was expected, check the performance of the sensor in buffers. Also, use a second pH meter to verify the change.
- 2. Is the sensor properly wired to the transmitter?
- 3. Is the glass bulb cracked or broken? Check the glass electrode impedance. See Section 14.1
- 4. Is the transmitter working properly. Check the transmitter by simulating the pH input.

16.8.5 Process pH is slightly different from the expected value.

Differences between pH readings made with an on-line instrument and a laboratory or portable instrument are normal. The on-line instrument is subject to process variables, for example ground potentials, stray voltages, and orientation effects that may not affect the laboratory or portable instrument. To make the process reading agree with a reference instrument, see Section 13.4.

16.8.6 Process pH reading changes when flow changes.

The 399 pH sensor recommended for use with the 5081A transmitter has some degree of flow sensitivity, i.e., changing the sample flow causes the pH reading to change. Flow sensitivity varies from sensor to sensor. Flow sensitivity can be a source of error if the pH and chlorine sensor flow cells are connected in series. The chlorine sensor requires a fairly rapidly flowing sample, and high flows may affect the pH reading. Typically, the difference in pH reading from a 399 pH sensor in a rapidly (16 gph) and slowly (<2 gph) flowing sample is less than about 0.05. If the change is greater than 0.05, the pH and chlorine sensors should be installed in parallel streams.

16.8.7 Process pH is grossly wrong and/or noisy.

Grossly wrong or noisy readings suggest a ground loop (measurement system connected to earth ground at more than one point), a floating system (no earth ground), or noise being brought into the transmitter by the sensor cable. The problem arises from the process or installation. It is not a fault of the transmitter. The problem should disappear once the sensor is taken out of the system. Check the following:

- 1. Is a ground loop present?
 - a. Verify that the system works properly in buffers. Be sure there is no direct electrical connection between the buffer containers and the process liquid or piping.
 - b. Strip back the ends of a heavy gauge wire. Connect one end of the wire to the process piping or place it in the process liquid. Place the other end of the wire in the container of buffer with the sensor. The wire makes an electrical connection between the process and sensor.
 - c. If offsets and noise appear after making the connection, a ground loop exists.

- 2. Is the process grounded?
 - a. The measurement system needs one path to ground: through the process liquid and piping. Plastic piping, fiberglass tanks, and ungrounded or poorly grounded vessels do not provide a path. A floating system can pick up stray voltages from other electrical equipment.
 - b. Ground the piping or tank to a local earth ground.
 - c. If noise still persists, simple grounding is not the problem. Noise is probably being carried into the instrument through the sensor wiring.
- 3. Simplify the sensor wiring.
 - a. First, verify that pH sensor wiring is correct.
 - b. Disconnect all sensor wires at the transmitter except pH/mV IN, REFERENCE IN, RTD IN and RTD RETURN. See the wiring diagrams in Section 3.0. If the sensor is wired to the transmitter through a remote junction box containing a preamplifier, disconnect the wires at the sensor side of the junction box.
 - c. Tape back the ends of the disconnected wires to keep them from making accidental connections with other wires or terminals.
 - d. Connect a jumper wire between the RTD RETURN and RTD SENSE terminals (see wiring diagrams in Section 3.0).
 - e. If noise and/or offsets disappear, the interference was coming into the transmitter through one of the sensor wires. The system can be operated permanently with the simplified wiring.
- 4. Check for extra ground connections or induced noise.
 - a. If the sensor cable is run inside conduit, there may be a short between the cable and the conduit. Re-run the cable outside the conduit. If symptoms disappear, there is a short between the cable and the conduit. Likely a shield is exposed and touching the conduit. Repair the cable and reinstall it in the conduit.
 - b. To avoid induced noise in the sensor cable, run it as far away as possible from power cables, relays, and electric motors. Keep sensor wiring out of crowded panels and cable trays.
 - c. If ground loops persist, consult the factory. A visit from a service technician may be required to solve the problem.

16.8.8 Process readings are noisy.

1. What is the conductivity of the sample? Measuring pH is samples having conductivity less than about 50uS/cm can be very difficult. Special sensors (for example, the Model 320HP) are often needed and special attention must be paid to grounding and sample flow rate.

NOTE:

Measuring free chlorine in samples having low conductivity can also be a problem. Generally, for a successful chlorine measurement, the conductivity should be greater than 50 μ S/cm.

- 2. Is the sensor dirty or fouled? Suspended solids in the sample can coat the reference junction and interfere with the electrical connection between the sensor and the process liquid. The result is often a noisy reading.
- 3. Is the sensor properly wired to the transmitter? See Section 3.0.
- 4. Is a ground loop present? Refer to Section 16.8.7.

16.9 SIMULATING INPUT CURRENTS - DISSOLVED OXYGEN

To check the performance of the transmitter, use a decade box to simulate the current from the oxygen sensor.

- A. Disconnect the anode and cathode leads from terminals 13 & 14 and connect a decade box as shown in Figure 16-1. It is not necessary to disconnect the RTD leads.
- B. Set the decade box to the resistance shown in the table.

Sensor	Polarizing Voltage	Resistance	Expected Current
499ADO	-675 mV	34 kΩ	20 µA
499ATrDO	-800 mV	20 kΩ	40 µA
Hx438 and Gx448	-675 mV	8.4 MΩ	80 nA

- C. Note the sensor current. To view the sensor current, go to the main display and press DIAG. Then press NEXT. SEnSor Cur will appear in the display. Press ENTER. The display will show the sensor current. Note the units: μA is microamps: nA is nanoamps.
- D. Change the decade box resistance and verify that the correct current is shown. Calculate the current from the equation:

current (μ A) = $\frac{\text{voltage (mV)}}{\text{resistance (k}\Omega)}$

16.10 SIMULATING INPUT CURRENTS - CHLORINE AND OZONE

To check the performance of the transmitter, use a decade box and a battery to simulate the current from the sensor. The battery, which opposes the polarizing voltage, is necessary to ensure that the sensor current has the correct sign.

- A. Disconnect the anode and cathode leads from terminals 13 & 14 and connect a decade box and battery as shown in Figure 16-2. It is not necessary to disconnect the RTD leads.
- B. Set the decade box to the resistance shown in the table.

Sensor	Polarizing Voltage	Resistance	Expected Current
499ACL-01 (free chlorine)	200 mV	28 MΩ	500 nA
499ACL-02 (total chlorine)	250 mV	675 kΩ	2000 nA
499AOZ	200 mV	2.7 MΩ	500 nA

- C. Note the sensor current. It should be close to the value in the table. The actual value depends on the voltage of the battery. To view the sensor current, go to the main display and press DIAG. Then, press NEXT. SEnSor Cur will appear in the display. Press ENTER. The display will show the sensor current. Note the units: uA is microamps: nA is nanoamps.
- D. Change the decade box resistance and verify that the correct current is shown. Calculate the current from the equation:

current (
$$\mu$$
A) = $\frac{V_{battery} - V_{polarizing} (mV)}{resistance (k\Omega)}$

The voltage of a fresh 1.5 volt battery is about 1.6 volt (1600 mV).

91

16.11 SIMULATING INPUTS - pH

16.11.1 General

This section describes how to simulate a pH input into the transmitter. To simulate a pH measurement, connect a standard millivolt source to the transmitter. If the transmitter is working properly, it will accurately measure the input voltage and convert it to pH. Although the general procedure is the same, the wiring details depend on whether the preamplifier is in the sensor, a junction box, or the transmitter.

16.11.2 Simulating pH input when the preamplifier is in the analyzer.

- 1. Turn off automatic temperature correction and set the manual temperature to 25°C (Section 7.4).
- 2. Disconnect the pH sensor. Also, disconnect the chlorine sensor anode lead. Connect a jumper wire between the pH IN and REF IN terminals.
- 3. Confirm that the transmitter is reading the correct mV value. With the main display showing, press DIAG. Press NEXT until the display shows **PH**. Press ENTER. The display will show **InPUt** followed by a number. The number is the raw input signal in millivolts. The measured voltage should be 0 mV.
- 5. If a standard millivolt source is available, disconnect the jumper wire between the pH IN and REF IN terminals and connect the voltage source as shown in Figure 16-3.
- Calibrate the transmitter using the procedure in Section 13.3. Use 0.0 mV for Buffer 1 (pH 7.00) and -177.4 mV for Buffer 2 (pH 10.00). If the analyzer is working properly, it should accept the calibration. The slope should be 59.16 mV/pH, and the offset should be zero.
- 7. To check linearity, set the voltage source to the values shown in the table and verify that the pH and millivolt readings match the values in the table.

Voltage (mV)	pH (at 25°)
295.8	2.00
177.5	4.00
59.2	6.00
59.2	8.00
177.5	10.00
295.8	12.00

16.11.3 Simulating pH input when the preamplifier is in a junction box.

The procedure is the same as described in section 16.11.2. Keep the connection between the analyzer and the junction box in place. Disconnect the sensor at the sensor side of the junction box and connect the voltage source to the sensor side of the junction box.

16.11.4 Simulating pH input when the preamplifier is in the sensor.

The preamplifier in the sensor converts the high impedance signal into a low impedance signal without amplifying it. To simulate pH values, follow the procedure in Section 16.11.2.

16.12 SIMULATING TEMPERATURE

16.12.1 General

The transmitter accepts either a Pt100 RTD (used in pH, 499ADO, 499ATrDO, 499ACL-01, 499ACL-02, and 499AOZ sensors) or a 22k NTC thermistor (used in HX438 and Gx448 DO sensors and most steam-sterilizable sensors from other manufacturers). The Pt100 RTD has a three-wire configuration. See Figure 16-4. The thermistor has a two-wire configuration.

16.12.2 Simulating temperature

To simulate the temperature input, wire a decade box to the analyzer or junction box as shown in Figure 16-5.

To check the accuracy of the temperature measurement, set the resistor simulating the RTD to the values indicated in the table and note the temperature readings. The measured temperature might not agree with the value in the table. During sensor calibration an offset might have been applied to make the measured temperature agree with a standard thermometer. The offset is also applied to the simulated resistance. The controller is measuring temperature correctly if the difference between measured temperatures equals the difference between the values in the table to within $\pm 0.1^{\circ}$ C.

For example, start with a simulated resistance of 103.9Ω , which corresponds to 10.0° C. Assume the offset from the sensor calibration was -0.3 Ω . Because of the offset, the analyzer calculates temperature using 103.6Ω . The result is 9.2°C. Now change the resistance to 107.8Ω , which corresponds to 20.0° C. The analyzer uses 107.5Ω to calculate the temperature, so the display reads 19.2° C. Because the difference between the displayed temperatures (10.0° C) is the same as the difference between the simulated temperatures, the analyzer is working correctly.

FIGURE 16-4. Three-Wire RTD Configuration.

Although only two wires are required to connect the RTD to the analyzer, using a third wire allows the analyzer to correct for the resistance of the lead wires and for changes in the lead wire resistance with temperature.

The figure shows wiring connections for sensors containing a Pt 100 RTD. For sensors using a 22k NTC thermistor (Hx438 and Gx448 sensors), wire the decade box to terminals 1 and 3 on TB6.

Temp. (°C)	Pt 100 (Ω)	22k NTC (kΩ)
0	100.0	64.88
10	103.9	41.33
20	107.8	26.99
25	109.7	22.00
30	111.7	18.03
40	115.5	12.31
50	119.4	8.565
60	123.2	6.072
70	127.1	4.378
80	130.9	3.208
85	132.8	2.761
90	134.7	2.385
100	138.5	1.798

16.13 MEASURING REFERENCE VOLTAGE

Some processes contain substances that poison or shift the potential of the reference electrode. Sulfide is a good example. Prolonged exposure to sulfide converts the reference electrode from a silver/silver chloride electrode to a silver/silver sulfide electrode. The change in reference voltage is several hundred millivolts. A good way to check for poisoning is to compare the voltage of the reference electrode with a silver/silver chloride electrode known to be good. The reference electrode from a new sensor is best. See Figure 16-6. If the reference electrode is good, the voltage difference should be no more than about 20 mV. A poisoned reference electrode usually requires replacement

SECTION 17.0 MAINTENANCE

17.1 OVERVIEW

This section gives general procedures for routine maintenance of the 5081-A transmitter. The transmitter needs almost no routine maintenance.

17.2 TRANSMITTER MAINTENANCE

Periodically clean the transmitter window with household ammonia or glass cleaner. The detector for the infrared remote controller is located behind the window at the top of the transmitter face. The window in front of the detector must be kept clean.

Most components of the transmitter are replaceable. Refer to Figure 17-1 and Table 17-1 for parts and part numbers.

Three screws (part 13 in the drawing) hold the three circuit boards in place. Removing the screws allows the display board (part 2) and the CPU board (part 3) to be easily removed. A ribbon cable connects the boards. The cable plugs into the CPU board and is permanently attached to the display board. A 16 pin and socket connector holds the CPU and analog (part 4) boards together. Five screws hold the terminal block (part 5) to the center housing (part 7), and the 16 pins on the terminal block mate with 16 sockets on the back side of the analog board. Use caution when separating the terminal block from the analog board. The pin and socket connection is tight.

Location in Figure 17-1	PN	Description	Shipping Weight
1	23992-00	PCB stack consisting of the CPU (part 3) and analog (part 4) boards, display board is not included, CPU and analog boards are factory-calibrated as a unit and cannot be ordered separately	1 lb/0.5 kg
2	23638-01	LCD display PCB	1 lb/0.5 kg
5	33337-02	Terminal block	1 lb/0.5 kg
6	23593-01	Enclosure cover, front with glass window	3 lb/1.5 kg
7	33360-00	Enclosure, center housing	4 lb/1.5 kg
8	33362-00	Enclosure cover, rear	3 lb/1.0 kg
9	6560135	Desiccant in bag, one each	1 lb/0.5 kg
10	9550187	O-ring (2-252), one, front and rear covers each require an O-ring	1 lb/0.5 kg
12	note	Screw, 8-32 x 0.5 inch, for attaching terminal block to center housing	*
13	note	Screw, 8-32 x 1.75 inch, for attaching circuit board stack to center housing	*
14	33342-00	Cover lock	1 lb/0.5 kg
15	33343-00	Locking bracket nut	1 lb/0.5 kg
16	note	Screw, 10-24 x 0.38 inch, for attaching cover lock and locking bracket nut to center housing	*

TABLE 17-1. Replacement Parts for Model 5081-A Transmitter

NOTE: For information only. Screws cannot be purchased from Rosemount Analytical. * Weights are rounded up to the nearest whole pound or 0.5 kg.

SECTION 18.0 RETURN OF MATERIAL

18.1 GENERAL.

To expedite the repair and return of instruments, proper communication between the customer and the factory is important. Call 1-949-757-8500 for a Return Materials Authorization (RMA) number.

18.2 WARRANTY REPAIR.

The following is the procedure for returning instruments still under warranty:

- 1. Call Rosemount Analytical for authorization.
- 2. To verify warranty, supply the factory sales order number or the original purchase order number. In the case of individual parts or sub-assemblies, the serial number on the unit must be supplied.
- 3. Carefully package the materials and enclose your "Letter of Transmittal" (see Warranty). If possible, pack the materials in the same manner as they were received.
- 4. Send the package prepaid to:

Rosemount Analytical Inc., Uniloc Division Uniloc Division 2400 Barranca Parkway Irvine, CA 92606

Attn: Factory Repair

RMA No.

Mark the package: Returned for Repair

Model No.

18.3 NON-WARRANTY REPAIR.

The following is the procedure for returning for repair instruments that are no longer under warranty:

- 1. Call Rosemount Analytical for authorization.
- 2. Supply the purchase order number, and make sure to provide the name and telephone number of the individual to be contacted should additional information be needed.
- 3. Do Steps 3 and 4 of Section 18.2.

NOTE

Consult the factory for additional information regarding service or repair.

APPENDIX A BAROMETRIC PRESSURE AS A FUNCTION OF ALTITUDE

The table shows how barometric pressure changes with altitude. Pressure values do not take into account humidity and weather fronts.

Altitude		Barometric Pressure			
m	ft	bar	mm Hg	in Hg	kPa
0	0	1.013	760	29.91	101.3
250	820	0.983	737	29.03	98.3
500	1640	0.955	716	28.20	95.5
750	2460	0.927	695	27.37	92.7
1000	3280	0.899	674	26.55	89.9
1250	4100	0.873	655	25.77	87.3
1500	4920	0.846	635	24.98	84.6
1750	5740	0.821	616	24.24	82.1
2000	6560	0.795	596	23.47	79.5
2250	7380	0.771	579	22.78	77.1
2500	8200	0.747	560	22.06	74.7
2750	9020	0.724	543	21.38	72.4
3000	9840	0.701	526	20.70	70.1
3250	10,660	0.679	509	20.05	67.9
3500	11,480	0.658	494	19.43	65.8

APPENDIX B

Model 4000 Percent Oxygen Sensor for Measurement in Gas

Description and Specifications

- STABLE, RELIABLE amperometric Oxygen Sensor
- LONG LIFE, LOW MAINTENANCE rechargeable sensor
- ROBUST DESIGN for harsh applications*
- · RAPID CALIBRATION using ambient air
- COMPATIBLE WITH 5081-A AND 1055 INSTRUMENTS

APPLICATIONS

The Model 4000 sensor is used to monitor percent oxygen concentrations in gaseous streams. The most common use is to monitor oxygen headspace concentration for nitrogen blanketing applications. The sensors are also used in other applications where oxygen levels are controlled and monitored.

FEATURES

The Model 4000 Series Percent Oxygen sensor is a membrane-covered amperometric sensor. The membrane consists of a gas permeable Teflon^{®1} membrane stretched tightly over a gold cathode. A silver anode and an electrolyte solution complete the internal circuit. The sensor body is constructed of Ryton^{®2}, which can withstand exposure to hydrocarbons and other corrosive chemicals.

Gas permeates through the membrane, and the oxygen in the sample is reduced at the cathode. A voltage is applied across the cathode and anode, generating an electrical current that is directly proportional to the oxygen concentration in the sample. Since the rate of oxygen diffusion through the membrane is temperature dependent, the sensor response must be corrected for permeability caused by temperature. A Pt 100 RTD in the sensor accurately measures temperature, and the analyzer automatically performs the correction.

The sensor is easy to maintain. For calibration simply expose the sensor to ambient air and press the air calibration button. The analyzer measures the barometric pressure using an on-board pressure sensor and calculates the equilibrium solubility of atmospheric oxygen at the prevailing temperature and pressure. Replacing the membrane requires no special tools or fixtures. To replenish the electrolyte solution, unscrew the fill plug, add the reagent, and replace the plug.

TYPES OF SENSORS:

Rechargeable with a fast response flow assembly allows minimum volume gas flow that permits mounting sensor in a flowing gas stream. Sample is supplied at slightly above atmospheric pressure, flows through the assembly, and discharges to atmospheric pressure. Internal volume is low to minimize sensor response time. Refer to Figure 1 for mounting instructions.

Rechargeable In-line flow — In line pressure compensated flow assembly permits mounting the sensor in a variable pressure gas stream at pressures up to 50 psig. This may or may not include a gland on the sensor body. Refer to Figures 2, 3, and 4 for mounting instructions.

*RYTON is resistant to 30% sulfuric acid, 85% phosphoric acid, 30% sodium hydroxide, gasoline, aliphatic alcohols, esters, ethers, and ketones, as well as to aromatic amines. It is not particularly suited for service in strong oxidizing agents, aliphatic amines, chlorinated hydrocarbons, or aromatic nitrites, aldehydes, and nitro compounds.

¹ Teflon is a registered trademark of E.I. du Pont de Nemours & Co.

² Ryton is a registered trademark of Chevron Phillips Chemical Company LP.

SPECIFICATIONS

Range: 0-25% Oxygen

Linearity: For constant sample temperature after correction for sensor zero offset: $\pm 1\%$ of full scale **Repeatability:** $\pm 0.1\%$ of range

Stability:

Zero drift $\pm 0.25\%$ O₂ per week @ 25°C;

Span drift ± 0.25% O₂ per week @ 25°C

Response Time: 90% in 20 seconds for a step change, using an equilibrated sensor at 25°C

Sample Pressure: 0 to 50 PSIG

Sample Temperature: 32 to 110°F

Humidity: up to 95% non-condensing

Wetted materials: Ryton®1, Teflon®2

¹ Ryton is a registered trademark of Chevron Phillips Chemical Company LP.

² Teflon is a registered trademark of E.I. du Pont de Nemours & Co.

INSTRUMENT SET UP FOR % OXYGEN MEASUREMENT

Press Program, Display, Type = O2. Unit = %. Refer to Figure 6 for wiring diagram.

CALIBRATION

Air calibration is recommended. Using a certified span gas is an option, but since the concentration of oxygen in ambient air is close to 21% at sea level, this is the best solution. Refer to the instrument instruction manual for details on how to access the calibration menu.

TROUBLESHOOTING

The most frequent fault is a progressive development of insensitivity of the sensor. If sensor calibration is sluggish, then the sensor should be recharged with new electrolyte and the membrane may need to be replaced. Listed below are some common troubleshooting techniques

SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
Abnormally high oxygen readings (unable to calibrate)	 Hole in sensor membrane Gold cathode loose Open RTD 	 Replace membrane Replace sensor Replace sensor
Abnormally low oxygen readings (unable to calibrate)	 High internal cell resistance Membrane loose Contaminated electrolyte RTD shorted 	 Replace sensor Tighten cap / replace membrane Clean / recharge sensor Replace sensor
Sensor noisy (motion sensitive)	 Membrane loose Low electrolyte level Cathode contaminated 	 Replace membrane Fill properly Replace sensor
Upscale reading with known oxygen-free sample	Gold cathode loose	Replace sensor

PROCEDURE TO RECHARGE THE SENSOR:

Refer to Figure 8 for an exploded view of the sensor.

- 1. Unscrew the knurled cap from the sensor body. Remove the membrane assembly. Empty all electrolyte from the sensor. Flush the sensor with distilled or deionized water to remove all particulate.
- 2. Place a piece of adhesive tape over the breather hole in the pressure compensation diaphragm port (not the slotted fill plug).
- 3. Examine the cathode for staining or uneven coloration, which indicates the cathode should be rejuvenated. Also inspect the grooves that surround the cathode for any deposited material, which will typically be white to gray in color. Most of these deposits are water soluble and can be removed via a water jet from a squeeze bottle. Any insoluble deposits may be removed with a toothpick, but care must be used to avoid deforming the grooves.
- 4. Disassemble the membrane assembly. Remove the retainer from the holder by placing your finger into the center hold of the holder and pressing your fingernail against the inner edge of the retainer. Remove and discard the old membrane.
- 5. Verify that the o-ring is properly positioned in the associated groove holder.
- 6. Holding a single membrane by the edges only, place it across the membrane holder and snap the retainer in place.
- 7. Using a sharp razor blade, carefully trim away excess membrane around the edges. Take care that the razor blade does not cut into the edges of the membrane assembly.
- 8. Set the sensor body on a flat surface with the cathode facing upward. Verify that the o-ring is properly positioned around the cathode. Pour the electrolyte over the cathode / central post assembly so it runs down into the sensor electrolyte well. Fill the well to a level flush with the top of the sidewall. Put the membrane assembly directly onto the cathode so that the face of the holder fits against the o-ring in the end of sensor body. The membrane is now in place.
- 9. Carefully place the cap on the sensor body. Screw the cap on, finger-tight only. Then lay the sensor on its side with the side port up. Remove the side port screw, rubber pressure-compensating diagram, and washer. Add electrolyte, if necessary, to bring the level even with the shoulder. With the side port still facing up, tighten the cap further until it is snug and the membrane is stretched taut across the cathode. Any excess electrolyte displaced from the well may now be removed by blotting with a tissue.
- 10. Insert the new rubber diaphragm into the side port, place the new washer over the diaphragm, and secure the side port screw. Do not overtighten the screw.
- 11. Inspect the sensor for possible leaks or damage to the membrane.
- 12. Remove the adhesive tape in step 2. The sensor is now ready for operation.

ROSEMOUNT Analytical EC Declaration of Conformity	 We, Emerson Process Management, Blegistrasse 21, Barr, Switzerland CH 6341 declare under our sole responsibility that the product, 5081-A-HT-60 Amperometric Transmitter, HART; 5081-P-HT-60 pH Transmitter, Fieldbus; 5081-P-FF-60 pH Transmitter,	Assumption of conformity is based on the application of the harmonized standards. Andy Kemish (anne printed) (date of issue) (date of issue)		EMC Directive (2004/108/EC) 5081-A-HT-60, 5081-P-HT-60 (HART) 5081-A-FF-60, 5081-P-FF-60 (Fieldbus) 5081-A-FI-60, 5081-P-FI-60 (FISCO Fieldbus) Harmonized standard used: EN 61326-1: 2006		EMERSON. Process Management
ROSEMOUNT Analytical EC Declaration of Conformity	We, Emerson Process Management, Blegistrasse 21, Barr, Switzerland CH 6341 declareunder our sole responsibility that the product,5081-A-HT5081-A-HT5081-P-HT6081-P-FF-73Amperometric Transmitter, Fieldbus;5081-P-FF-73FH-F735081-P-FF-73PH Transmitter, Fieldbus;5081-P-FF-73PH Transmitter, Fieldbus;5081-P-FF-735081-P-FF-735081-P-FF-735081-P-FF-73 <t< th=""><th>Assumption of conformity is based on the application of the harmonized standards and, when applicable or required, a European Community notified body certification, as shown below.</th><th>EMC Directive (2004/108/EC) 5081-A-HT, 5081-P-HT (HART) 5081-A-FF-73, 5081-P-FF-73 (Fieldbus) 5081-A-F1-73, 5081-P-F1-73 (FISCO Fieldbus) Harmonized standard used: EN 61326-1: 2006</th><th>ATEX Directive (94/9/EC) Provisions of the directive fulfilled by the equipment: Equipment Group II, Category I G Ex ia IIC T4 Ga (-20°C ≤ Ta ≤ +65°C) 5081-A-HT 5081-P-HT (HART) 5081-A-FF-73, 5081-P-FF-73 (Fieldbus) 5081-A-FI-73, 5081-P-FI-73 (Fieldbus) BAS02ATEX1284X Intrinsically Safe Certificate Harmonized standards used: EN 60079-0:2009 EN 60079-11:2007</th><th>Special condition for safe use: The apparatus enclosure may contain light metals. The apparatus must be installed in such a manner as to minimize the risk of impact or friction with other metal surfaces.</th><th>ATEX Notified Body for EC Type Examination Certificate & Quality Assurance: Baseefa [Notified Body Number: 1180], Rockhead Business Park, Staden Lane Buxton, Derbyshire SK17 9RZ, United Kingdom</th></t<>	Assumption of conformity is based on the application of the harmonized standards and, when applicable or required, a European Community notified body certification, as shown below.	EMC Directive (2004/108/EC) 5081-A-HT, 5081-P-HT (HART) 5081-A-FF-73, 5081-P-FF-73 (Fieldbus) 5081-A-F1-73, 5081-P-F1-73 (FISCO Fieldbus) Harmonized standard used: EN 61326-1: 2006	ATEX Directive (94/9/EC) Provisions of the directive fulfilled by the equipment: Equipment Group II, Category I G Ex ia IIC T4 Ga (-20°C ≤ Ta ≤ +65°C) 5081-A-HT 5081-P-HT (HART) 5081-A-FF-73, 5081-P-FF-73 (Fieldbus) 5081-A-FI-73, 5081-P-FI-73 (Fieldbus) BAS02ATEX1284X Intrinsically Safe Certificate Harmonized standards used: EN 60079-0:2009 EN 60079-11:2007	Special condition for safe use: The apparatus enclosure may contain light metals. The apparatus must be installed in such a manner as to minimize the risk of impact or friction with other metal surfaces.	ATEX Notified Body for EC Type Examination Certificate & Quality Assurance: Baseefa [Notified Body Number: 1180], Rockhead Business Park, Staden Lane Buxton, Derbyshire SK17 9RZ, United Kingdom

WARRANTY

Seller warrants that the firmware will execute the programming instructions provided by Seller, and that the Goods manufactured or Services provided by Seller will be free from defects in materials or workmanship under normal use and care until the expiration of the applicable warranty period. Goods are warranted for twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller, whichever period expires first. Consumables, such as glass electrodes, membranes, liquid junctions, electrolyte, o-rings, catalytic beads, etc., and Services are warranted for a period of 90 days from the date of shipment or provision.

Products purchased by Seller from a third party for resale to Buyer ("Resale Products") shall carry only the warranty extended by the original manufacturer. Buyer agrees that Seller has no liability for Resale Products beyond making a reasonable commercial effort to arrange for procurement and shipping of the Resale Products.

If Buyer discovers any warranty defects and notifies Seller thereof in writing during the applicable warranty period, Seller shall, at its option, promptly correct any errors that are found by Seller in the firmware or Services, or repair or replace F.O.B. point of manufacture that portion of the Goods or firmware found by Seller to be defective, or refund the purchase price of the defective portion of the Goods/Services.

All replacements or repairs necessitated by inadequate maintenance, normal wear and usage, unsuitable power sources, unsuitable environmental conditions, accident, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer's expense. Seller shall not be obligated to pay any costs or charges incurred by Buyer or any other party except as may be agreed upon in writing in advance by an authorized Seller representative. All costs of dismantling, reinstallation and freight and the time and expenses of Seller's personnel for site travel and diagnosis under this warranty clause shall be borne by Buyer unless accepted in writing by Seller.

Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller. Except as otherwise expressly provided in the Agreement, THERE ARE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FIT-NESS FOR PARTICULAR PURPOSE, OR ANY OTHER MATTER WITH RESPECT TO ANY OF THE GOODS OR SERVICES.

RETURN OF MATERIAL

Material returned for repair, whether in or out of warranty, should be shipped prepaid to:

Emerson Process Management Rosemount Analytical 2400 Barranca Parkway Irvine, CA 92606

The shipping container should be marked: Return for Repair

Model

The returned material should be accompanied by a letter of transmittal which should include the following information (make a copy of the "Return of Materials Request" found on the last page of the Manual and provide the following thereon):

- 1. Location type of service, and length of time of service of the device.
- 2. Description of the faulty operation of the device and the circumstances of the failure.
- 3. Name and telephone number of the person to contact if there are questions about the returned material.
- 4. Statement as to whether warranty or non-warranty service is requested.
- 5. Complete shipping instructions for return of the material.

Adherence to these procedures will expedite handling of the returned material and will prevent unnecessary additional charges for inspection and testing to determine the problem with the device.

If the material is returned for out-of-warranty repairs, a purchase order for repairs should be enclosed.

The right people, the right answers, right now.

Emerson Process Management

2400 Barranca Parkway Irvine, CA 92606 USA Tel: (949) 757-8500 Fax: (949) 474-7250

www.RosemountAnalytical.com

ON-LINE ORDERING NOW AVAILABLE ON OUR WEB SITE www.RosemountAnalytical.com

Specifications subject to change without notice.

© Rosemount Analytical Inc. 2013